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Reliability-Based Turbo Detection
Jun Tao, Member, IEEE, Jingxian Wu, Member, IEEE, and Yahong Rosa Zheng, Senior Member, IEEE

Abstract—This paper proposes a reliability-based turbo detec-
tion scheme for multiple-input multiple-output (MIMO) systems
with frequency-selective fading. The proposed scheme performs
iterative successive soft interference cancellation (SSIC) with
a block decision-feedback equalizer (BDFE). To minimize the
negative impacts of error propagation in SSIC, we propose a new
group-wise reliability-based ordering scheme, where neighboring
symbols that severely interfere with each other are clustered into
the same group, and for each group, more “reliable” symbols
are detected before less “reliable” ones. The symbol reliability
is measured by using the symbol a priori probability, which is a
unique byproduct of the turbo detection and can be obtained with
little overhead. The reliability information is updated iteratively
as the turbo detection progresses, and this leads to a dynamic
ordering scheme that is unavailable in conventional ordered
successive interference cancellation (OSIC) schemes. Simulation
results show that extra performance gain is obtained at a very
small ordering cost, and the reliability-based turbo detection can
achieve a performance that is only 0.5 dB away from the optimum
maximum a posteriori probability (MAP) detection.

Index Terms—Block decision-feedback equalizer (BDFE),
multiple-input multiple-output (MIMO), reliability-based turbo
detection, symbol reliability.

I. INTRODUCTION

TURBO detection is a powerful receiver technique that
improves system performance by iteratively exchanging

extrinsic soft information between a soft-decision equalizer
and a soft-decision channel decoder. The optimum turbo
detection schemes [1], [2] adopt the soft-output Viterbi al-
gorithm (SOVA) [3] or the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [4] for channel equalization and decoding. Both
SOVA and BCJR algorithms are trellis-based methods, and
their computational complexities increase exponentially as
𝑄𝑁(𝐿−1) [5] with 𝑄, 𝑁 and 𝐿 being the modulation level,
the number of transmit antennas and the channel length, re-
spectively. The complexity becomes prohibitively high when 𝐿
and 𝑄 are large. This necessitates the study of low-complexity
sub-optimal turbo detection (or equalization) algorithms.

A large number of low-complexity turbo equalization algo-
rithms have been developed during the last decade to trade-
off complexity with performance for both single-input single-
output (SISO) systems [6]–[13] and multiple-input multiple-
output (MIMO) systems [14]–[16]. In [6]–[8], linear minimum
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mean square error (LMMSE) equalizers with soft interference
cancellation have been used to replace the BCJR-based opti-
mum maximum a posteriori probability (MAP) equalizer for
SISO systems. The variations of [6] can be found in [9]–
[11], where a decision-aided equalization (DAE) is proposed
in [9] and an adaptive equalizer is adopted in [10] by taking
into account the sub-optimality of the previously-estimated
symbols. The result in [10] has also been extended to infinite-
length LMMSE equalizer in [11]. In [12], a joint coding and
decision-feedback equalization (DFE) scheme is proposed, and
the soft information from the output of both the equalizer and
the channel decoder are fed back for interference cancellation.
A soft feedback equalizer is proposed in [13], where the soft
output of the equalizer is used for inter-symbol interference
(ISI) cancellation. The scheme in [13] is different from the
turbo DFE with hard decision feedback as proposed in [7]. The
turbo detection scheme proposed in [6] has been extended to
MIMO systems [14], [15]. In [16], pre-filtering is employed to
reduce the number of channel trellis states so that the BCJR-
based equalization can be performed with reduced complexity
for MIMO systems. Recently, a turbo detection structure
employing block decision feedback equalizer (BDFE) was
proposed in [17] for SISO systems. The BDFE can achieve
a better performance than the conventional linear equalizer
(LE) and DFE [18]. The turbo equalization in [17] has enabled
a low-complexity sequence-based log-likelihood ratio (LLR)
calculation for performance improvement.

In this paper, we propose a reliability-based turbo de-
tection scheme for MIMO block-transmission systems with
frequency-selective fading. In a spatially-multiplexed MIMO
system with frequency-selective fading, the interference
among the transmitted symbols arises from two sources: the
ISI due to the time dispersion of the fading, and the spatial
multiplexing interference (MI) among the concurrent data
streams sent by multiple transmit antennas. In the proposed
turbo detection scheme, successive soft interference cancel-
lation (SSIC) is performed in both the time domain on ISI,
and the space domain on MI. The space-time SSIC subtracts
the interference of previously-detected symbols, in the form
of soft decisions, during the detection of the current symbol.
Due to the possible error propagation in SSIC, the order in
which the symbols are detected is critical to the detection
performance. An unreliable soft decision will negatively affect
the detection of the subsequent symbols. To combat error
propagation and improve the SSIC performance, we propose a
low-complexity group-wise reliability-based ordering scheme.
In the proposed scheme, an entire block of symbols are
first divided into multiple groups, such that adjacent symbols
severely interfering each other are clustered into the same
group. Then, within each group, symbols are ordered accord-
ing to a new a priori reliability metric, which is calculated
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Fig. 1. A MIMO communication system with turbo detection.

from the symbol a priori probability and is a unique byproduct
of turbo detection. Symbols with higher reliability will be
detected before those with lower reliability.

Compared with existing ordered successive interference
cancellation (OSIC) schemes in the literature [19]–[22], the
proposed reliability-based ordering scheme contributes to
performance improvement from three perspectives. First, the
ordering is based on the symbol a priori probability which
can be obtained at a very low cost. On the other hand, most
existing OSIC schemes rely on the channel condition in terms
of mean square error (MSE) or signal-to-noise ratio (SNR),
and the ordering process usually involves matrix pseudo-
inverse operations thus is computationally intensive [21]. An
LLR-based ordering method is proposed in [23]. However,
the reliability information therein is in the form of symbol
a posteriori LLR, and the calculation of which still requires
matrix inversion for each symbol. Second, with the proposed
scheme, the ordering is performed in the two-dimensional (2-
D) space-time domain, while existing OSIC schemes perform
ordering only in the one-dimensional (1-D) space domain.
Third, since the symbol a priori knowledge changes as the iter-
ation progresses, the proposed ordering scheme is inherently
dynamic, compared with the static ordering of the existing
OSIC schemes.

The reliability-based turbo detection is developed by using
the block decision feedback equalizer [18] as a construction
tool. The model adopted in this work is slightly different from
that used in [18]. The adopted model uses a zero-padding
transmission block, and all the received samples from one
block are used during the detection. Such a model has two
advantages: first, the detection performance is improved since
more useful information is incorporated during the equaliza-

tion process; second, it leads to a block-Toeplitz structure of
the equivalent channel matrix, which enables the adoption of
a fast algorithm for the equalizer matrices calculation.

The rest of this paper is organized as follows. Section II
presents the MIMO block transmission model and reviews the
basics of turbo detection. The development of the reliability-
based MIMO turbo detection using BDFE is detailed in
Section III, where a low-complexity implementation of the
soft-decision BDFE is also proposed. Section IV analyzes the
complexity of the proposed detection scheme, and compares
it with that of a linear turbo equalization scheme. Simulation
results are presented in Section V, and Section VI concludes
the paper.

Notation: The superscripts, (⋅)𝑡 and (⋅)ℎ, represent the
matrix transpose and conjugate transpose, respectively. The
𝐾 × 𝑃 complex matrix space is denoted by 𝒞𝐾×𝑃 . An
identity matrix of size 𝐾 is denoted as I𝐾 , and a 𝐾 × 𝐾
diagonal matrix with diagonal elements 𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝐾 is
denoted as diag{𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝐾}. The operator 𝔼(⋅) represents
the mathematical expectation, and Π(⋅) and Π−1(⋅) denote
interleaving and de-interleaving operations, respectively. The
operators min(⋅), max(⋅), and mod(⋅) perform minimization,
maximization, and modulus operations, respectively. ⌈𝑥⌉ re-
turns the smallest integer that is larger than 𝑥, trace (A) returns
the trace of the matrix A, and a ≪ 𝑘 performs a left circular
shift operation on the vector a by 𝑘 locations.

II. SYSTEM DESCRIPTION

Consider an 𝑁 × 𝑀 MIMO communication system as
shown in Fig. 1, with 𝑁 and 𝑀 being the number of transmit
antennas and receive antennas, respectively. At the transmitter,
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𝑁 information bit streams, with 𝑎𝑛,𝑘 being the 𝑘-th infor-
mation bit of the 𝑛-th stream, are multiplexed onto the 𝑁
transmit branches. The 𝑛-th bit stream is encoded, interleaved,
and modulated. The outputs of the encoder, the interleaver
(Π), and the symbol mapper (modulator) are denoted by
𝑏𝑛,𝑘, 𝑐𝑛,𝑘, and 𝑥𝑛,𝑘, respectively. For a 𝑄-ary modulation
constellation set 𝒮 = {𝜒𝑞}𝑄𝑞=1, every log2𝑄 coded bits are
mapped onto one modulation symbol, i.e., the group of bits,
{𝑐𝑞,𝑝}log2𝑄

𝑝=1 , are mapped to the modulation symbol 𝜒𝑞 . The
modulation symbols on the 𝑛-th branch are transmitted via
the 𝑛-th transmit antenna in the form of a length-𝑁𝑏 block as,
x(𝑛) = [𝑥𝑛,1, 𝑥𝑛,2, ⋅ ⋅ ⋅ , 𝑥𝑛,𝑁𝑏

] ∈ 𝒮1×𝑁𝑏 . To avoid inter-block
interference (IBI), guard intervals (GI) are inserted among the
transmitted blocks. The GI is implemented as zeros padded
at the end of each block in this paper. It is noted that to
maintain a high transmission efficiency in practical systems,
the GI is usually not necessary provided that IBI can be
properly reconstructed and canceled with either pilot symbols
or already detected symbols.

On the receiver side, the received samples of one block at
the 𝑚-th receive antenna can be written as

𝑦𝑚,𝑘 =

𝐿−1∑
𝑙=0

𝑁∑
𝑛=1

𝑓𝑚,𝑛(𝑙)𝑥𝑛,𝑘−𝑙 + 𝑣𝑚,𝑘 (1)

for 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑏 + 𝐿 − 1, where 𝑓𝑚,𝑛(𝑙) is the 𝑙-th
tap of the equivalent discrete-time channel between the 𝑛-
th transmit antenna and the 𝑚-th receive antenna, 𝐿 is the
channel length, and 𝑣𝑚,𝑘 is the zero-mean additive white
Gaussian noise (AWGN) with variance 𝜎2

𝑣 . With zero-padding
block transmission, 𝑥𝑛,𝑘 = 0 for 𝑘 ≤ 0. It has been assumed
that the channel is constant over one block.

Stacking the received samples from all 𝑀 receive antennas
at time 𝑘 into a vector as, y𝑘=[𝑦1,𝑘, 𝑦2,𝑘, ⋅ ⋅ ⋅ , 𝑦𝑀,𝑘]

𝑡 ∈ 𝒞𝑀×1,
we have

y𝑘 =

𝐿−1∑
𝑙=0

F𝑙x𝑘−𝑙 + v𝑘 (2)

where x𝑘−𝑙 = [𝑥1,𝑘−𝑙, 𝑥2,𝑘−𝑙, ⋅ ⋅ ⋅ , 𝑥𝑁,𝑘−𝑙]
𝑡 ∈ 𝒮𝑁×1, v𝑘 =

[𝑣1,𝑘, 𝑣2,𝑘, ⋅ ⋅ ⋅, 𝑣𝑀,𝑘]
𝑡 ∈ 𝒞𝑀×1, and the (𝑚,𝑛)-th element of

the channel matrix, F𝑙 ∈ 𝒞𝑀×𝑁 , is 𝑓𝑚,𝑛(𝑙). The received
block is then obtained by stacking {y𝑘}𝑁𝑏+𝐿−1

𝑘=1 into a column
vector as y =

[
y𝑡
1,y

𝑡
2, ⋅ ⋅ ⋅ ,y𝑡

𝑁𝑏+𝐿−1

]𝑡 ∈ 𝒞𝑀(𝑁𝑏+𝐿−1)×1,
which can be denoted as

y = Fx+ v (3)

where x =
[
x𝑡
1,x

𝑡
2, ⋅ ⋅ ⋅ ,x𝑡

𝑁𝑏

]𝑡 ∈ 𝒮𝑁𝑁𝑏×1, v =[
v𝑡
1,v

𝑡
2, ⋅ ⋅ ⋅ ,v𝑡

𝑁𝑏+𝐿−1

]𝑡 ∈ 𝒞𝑀(𝑁𝑏+𝐿−1)×1, and the block
channel matrix, F ∈ 𝒞𝑀(𝑁𝑏+𝐿−1)×𝑁𝑁𝑏 , is given as

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 0 0 0 ⋅ ⋅ ⋅ 0 0
...

. . .
. . .

. . .
. . .

. . .
...

F𝐿−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ F0 0 ⋅ ⋅ ⋅ 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 ⋅ ⋅ ⋅ F𝐿−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ F0

...
. . .

. . .
. . .

. . .
. . .

...
0 0 0 0 ⋅ ⋅ ⋅ 0 F𝐿−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

The channel matrix in (4) possesses a block-Toeplitz structure
that is desirable for fast algorithm implementation.

For a MAP-based detection, the detector calculates the LLR
of the information bit as follows

Λ [𝑎𝑛,𝑘] = ln
𝑃 [𝑎𝑛,𝑘 = 0∣y]
𝑃 [𝑎𝑛,𝑘 = 1∣y]

= ln

∑
∀a:𝑎𝑛,𝑘=0

𝑝 (y∣a) ∏
∀𝑛′,𝑘′:𝑘′ ∕=𝑘 if 𝑛′=𝑛

𝑃 (𝑎𝑛′,𝑘′)∑
∀a:𝑎𝑛,𝑘=1

𝑝 (y∣a) ∏
∀𝑛′,𝑘′:𝑘′ ∕=𝑘 if 𝑛′=𝑛

𝑃 (𝑎𝑛′,𝑘′)︸ ︷︷ ︸
Λ𝑒[𝑎𝑛,𝑘]

+ Λ𝑎 [𝑎𝑛,𝑘] (5)

where Λ𝑎 [𝑎𝑛,𝑘] = ln𝑃 [𝑎𝑛,𝑘=0]
𝑃 [𝑎𝑛,𝑘=1] is the a priori LLR of 𝑎𝑛,𝑘. The

computation complexity of (5) increases exponentially with
the block size 𝑁𝑏 [24], and it is prohibitively high for practical
applications.

A common way to reduce the detection complexity is to
separate the equalization and decoding operations [6]-[16],
as shown at the bottom part of Fig. 1. The output LLRs
from the soft-decision MIMO equalizer is de-multiplexed,
de-interleaved, and then delivered as the a priori input to
the 𝑁 channel decoders. The decoders then generate new
LLRs, which are interleaved, multiplexed, and input as the a
priori knowledge for the equalizer to start the next iteration.
To avoid early limit-cycle behavior [7], only the extrinsic
LLR Λ𝑒 [𝑐𝑛,𝑘] = Λ [𝑐𝑛,𝑘] − Λ𝐷

𝑒 [𝑐𝑛,𝑘] of the equalizer and
the extrinsic LLR Λ𝐷

𝑒 [𝑏𝑛,𝑘] = Λ𝐷 [𝑏𝑛,𝑘] − Λ𝑒 [𝑏𝑛,𝑘] of the
decoder, are exchanged. Successive iterations are performed
until the detection converges. In the final iteration, the MAP
decoders calculate the LLRs, {Λ [𝑎𝑛,𝑘]}𝑁𝑛=1, of the 𝑁 in-
formation streams and output the corresponding hard deci-
sions, {�̂�𝑛,𝑘}𝑁𝑛=1. In practice, the MAP decoder is commonly
adopted due to its moderate number of trellis states. The MAP-
based equalizer, however, may incur a prohibitive complexity
on the order of 𝒪 (

𝑄𝑁(𝐿−1)
)
, for highly dispersive channels

with large 𝐿. We next develop a sub-optimum soft-decision
MIMO equalizer that can approach the performance of the
optimum MAP equalizer, but at a much lower complexity.

III. RELIABILITY-BASED MIMO TURBO DETECTION

USING BDFE

In this section, a soft-decision MIMO BDFE employing
reliability-based ordering is developed.

A. Reliability-Based Ordering

Define the a priori mean and the a priori variance of the
symbol, 𝑥𝑛,𝑘, as

�̄�𝑛,𝑘 =

𝑄∑
𝑞=1

𝜒𝑞𝑃 (𝑥𝑛,𝑘 = 𝜒𝑞), (6a)

𝜎2
𝑛,𝑘 =

𝑄∑
𝑞=1

∣𝜒𝑞 − �̄�𝑛,𝑘∣2𝑃 (𝑥𝑛,𝑘 = 𝜒𝑞) (6b)

where 𝑃 (𝑥𝑛,𝑘 = 𝜒𝑞) is the a priori probability of the symbol
𝑥𝑛,𝑘. It can be obtained from the a priori probabilities of its
demapping bits, {𝑐𝑛,(𝑘−1)log2𝑄+𝑝}log2𝑄

𝑝=1 , as 𝑃 (𝑠𝑛,𝑘 = 𝜒𝑞) =∏log2𝑄
𝑝=1 𝑃

[
𝑐𝑛,(𝑘−1)log2𝑄+𝑝 = 𝑐𝑞,𝑝

]
. Details are referred to [8].
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The reliability information of a symbol is extracted from
its a priori statistics. We propose to measure the symbol
reliability by using its a priori variance defined in (6b). The
variance of a random variable (RV) measures the expected
squared deviation of the RV from its mean. A lower a priori
variance means less uncertainty, thus a higher reliability.
Therefore, we define the a priori reliability measure of the
symbol 𝑥𝑛,𝑘 as

𝜌𝑛,𝑘 =
1

𝜎2
𝑛,𝑘

. (7)

With the reliability information, we are able to determine the
detection ordering. Intuitively, the symbols shall be detected in
a fashion that more reliable symbols are detected before less
reliable ones, so that the potential negative effects of error
propagation in the SSIC can be reduced. As a result, we need
to order the reliability measures over the entire block. The
complexity of such a global ordering (for example, using the
classic bubble sorting algorithm) is proportional to 𝑁2𝑁2

𝑏 , and
it could be high when 𝑁𝑏 is large.

We propose a group-wise ordering scheme to minimize the
ordering overhead during the turbo detection. The motivation
for the group-wise ordering comes from the fact that a
given symbol mainly interferes a group of its neighboring
symbols. Specifically, for a causal channel with length 𝐿, a
symbol transmitted at the time instant 𝑘 will only interfere
those transmitted between the time instants 𝑘 to 𝑘 + 𝐿 − 1.
Define the reliability vector at the time instant 𝑘 as 𝝆𝑘 ≜
[𝜌1,𝑘, ⋅ ⋅ ⋅ , 𝜌𝑁,𝑘]

𝑡 ∈ 𝒞𝑁×1, and the group-wise reliability-
based ordering scheme is presented as follows.

Step 1: Divide the reliability information of the entire block
into 𝑁𝑔 groups as

𝒢1 = {𝝆1,𝝆2, ⋅ ⋅ ⋅ ,𝝆𝐿𝑔
},𝒢2 = {𝝆𝐿𝑔+1,𝝆𝐿𝑔+2, ⋅ ⋅ ⋅ ,𝝆2𝐿𝑔

},
⋅ ⋅ ⋅ ,𝒢𝑁𝑔 = {𝝆(𝑁𝑔−1)𝐿𝑔+1,𝝆(𝑁𝑔−1)𝐿𝑔+2, ⋅ ⋅ ⋅ ,𝝆𝑁𝑔𝐿𝑔

} (8)

where 𝑁𝑔𝐿𝑔 = 𝑁𝑏, and it is obvious that each group
contains 𝐿𝑔 reliability vectors or equivalently, 𝑁𝐿𝑔 reliability
measures.

Step 2: Sort the reliability measures within each group in
an ascending order as

𝒢′
𝑖 = {𝜌⟨𝑂′

(𝑖−1)𝑁𝐿𝑔+1
⟩, 𝜌⟨𝑂′

(𝑖−1)𝑁𝐿𝑔+2
⟩, ⋅ ⋅ ⋅ , 𝜌⟨𝑂′

𝑖𝑁𝐿𝑔
⟩} (9)

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑔, where the ordered index set,
{𝑂′

(𝑖−1)𝑁𝐿𝑔+1, 𝑂
′
(𝑖−1)𝑁𝐿𝑔+2, ⋅ ⋅ ⋅ , 𝑂′

𝑖𝑁𝐿𝑔
}, is a permutation

of the index set, {(𝑖−1)𝑁𝐿𝑔+1, (𝑖−1)𝑁𝐿𝑔+2, ⋅ ⋅ ⋅ , 𝑖𝑁𝐿𝑔}.
An index mapping operator, ⟨⋅⟩, has been introduced and it is
defined as

⟨⋅⟩ : (𝑛, 𝑘) = ⟨𝑗⟩ with 𝑘 =

⌈
𝑗

𝑁

⌉
, 𝑛 =

{
mod(𝑗,𝑁) ∕= 0

𝑁, o.w.
(10)

Step 3: Obtain the ordering, 𝑶, by assembling the reliability
indices of all the ordered groups in (9) as

𝑶 = {⟨𝑂′
1⟩,⟨𝑂′

𝑁𝐿𝑔+1⟩, ⋅ ⋅ ⋅, ⟨𝑂′
(𝑁𝑔−1)𝑁𝐿𝑔+1⟩∣⟨𝑂′

2⟩,⟨𝑂′
𝑁𝐿𝑔+2⟩,

⋅ ⋅ ⋅ , ⟨𝑂′
(𝑁𝑔−1)𝑁𝐿𝑔+2⟩∣ ⋅ ⋅ ⋅ ∣⟨𝑂′

𝑁𝐿𝑔
⟩, ⋅ ⋅ ⋅ , ⟨𝑂′

𝑁𝑔𝑁𝐿𝑔
⟩} (11)

For the convenience of analysis, we simplify the notation of
(11) as follows

𝑶 = {⟨𝑂1⟩, ⟨𝑂2⟩, ⋅ ⋅ ⋅, ⟨𝑂𝑁𝑔 ⟩∣⟨𝑂𝑁𝑔+1⟩, ⟨𝑂𝑁𝑔+2⟩, ⋅ ⋅ ⋅ , ⟨𝑂2𝑁𝑔 ⟩∣
⋅ ⋅ ⋅∣⟨𝑂(𝑁𝐿𝑔−1)𝑁𝑔+1⟩,⟨𝑂(𝑁𝐿𝑔−1)𝑁𝑔+2⟩, ⋅ ⋅ ⋅,⟨𝑂𝑁𝐿𝑔𝑁𝑔⟩} (12)

So far, the ordering process is completed. Before moving
into the development of the soft-decision BDFE based on
the ordering, we provide two remarks on the group-wise
reliability-based ordering scheme.

Remark 1: As mentioned above, the group-wise ordering
is motivated by the finite memory of the channel. Therefore,
a natural choice of the group size is 𝐿𝑔 = 𝐿. Increasing or
decreasing the group size only incurs marginal performance
gain or loss, as will be shown in the simulation results.

Remark 2: The sorting operation for the 𝑁𝑔 groups incurs
an overall complexity on the order of 𝒪(𝑁2𝑁𝑏𝐿𝑔), which is
proportional to the group size 𝐿𝑔. When 𝐿𝑔 = 𝑁𝑏, which
corresponds to the global ordering, the ordering complexity is
on the order of 𝒪(𝑁2𝑁2

𝑏 ) as mentioned before. In practical
applications, a tradeoff between the ordering complexity and
the detection performance can be achieved by selecting a
proper group size.

B. Development of The Soft-Decision BDFE

With the ordering in (12), an alternative system representa-
tion of (3) can be obtained as

y = Hx′ + v (13)

where x′ = [𝑥⟨𝑂1⟩, 𝑥⟨𝑂2⟩, ⋅ ⋅ ⋅ , 𝑥⟨𝑂𝑁𝑁𝑏
⟩]𝑡, H =

[f𝑂1 , f𝑂2 , ⋅ ⋅ ⋅ , f𝑂𝑁𝑁𝑏
], with f𝑗 being the 𝑗-th column of

the channel matrix F. Based on the ordered system model in
(13), the soft-decision BDFE as shown in Fig. 2 is developed
in this subsection.

From the figure, to detect the symbol 𝑥⟨𝑂𝑔⟩, a feedforward
filter, C𝑔 ∈ 𝒞𝑁𝑁𝑏×𝑀(𝑁𝑏+𝐿−1), and a feedback filter, D𝑔 ∈
𝒞𝑁𝑁𝑏×𝑁𝑁𝑏 , are adopted, leading to the output vector

x̃′
𝑔=C𝑔

(
y −Hx̄′

𝑔

)−D𝑔

(
x̂′−x̄′

𝑔

)
+x̄′

𝑔 (14)

where x̄′
𝑔 = [�̄�⟨𝑂1⟩, ⋅ ⋅ ⋅ , �̄�⟨𝑂𝑔−1⟩, 0, �̄�⟨𝑂𝑔+1⟩, ⋅ ⋅ ⋅ , �̄�⟨𝑂𝑁𝑁𝑏

⟩]𝑡 is
the ordered a priori mean vector with the 𝑔-th element being
zero, x̂′ = [�̂�⟨𝑂1⟩, ⋅ ⋅ ⋅ , �̂�⟨𝑂𝑁𝑁𝑏

⟩]𝑡 is the ordered tentative soft
decision vector. The tentative soft symbol decision is defined
as the symbol a posteriori mean as

𝑥⟨𝑂𝑔⟩ =
𝑄∑

𝑞=1

𝜒𝑞𝑃 (𝑥⟨𝑂𝑔⟩ = 𝜒𝑞∣y) (15)

where 𝑃 (𝑥⟨𝑂𝑔⟩ = 𝜒𝑞∣y) is the symbol a posteriori probability
(APP). The calculation of 𝑃 (𝑥⟨𝑂𝑔⟩ = 𝜒𝑞∣y) is discussed in
Subsection III-C. Using soft instead of hard decisions during
the successive interference cancellation (SIC) will partly re-
duce the negative effects of error propagation. To enable SIC,
the feedback filter D𝑔 is designed as a zero-diagonal strict
upper triangular matrix, and the symbol detection is performed
successively by following the reverse order of the elements in
x′, i.e., the last element in x′ is detected first and the first
element in x′ is detected last.
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Fig. 2. Soft-decision MIMO BDFE (when 𝑥⟨𝑂𝑔⟩ is equalized).

With the common assumption of perfect decision feedback
[25], i.e., x̂′ = x′, the error vector of BDFE can be written as

e𝑔 = C𝑔

(
y −Hx̄′

𝑔

)− (D𝑔 + I𝑁𝑁𝑏
)
(
x′ − x̄′

𝑔

)
(16)

Minimizing the mean square error, 𝜎2
𝑒𝑔 ≜ 𝔼

[
eℎ𝑔e𝑔

]
, with the

orthogonality principle, 𝔼
[
e𝑔

(
y −Hx̄′

𝑔

)ℎ]
= 0, leads to

C𝑔 = R𝑔Σ
′
𝑔H

ℎ
[
HΣ′

𝑔H
ℎ + 𝜎2

𝑣I𝑀(𝑁𝑏+𝐿−1)

]−1
(17)

where R𝑔 = D𝑔 + I𝑁𝑁𝑏
, and Σ′

𝑔 =
diag{𝜎2

⟨𝑂1⟩, ⋅ ⋅ ⋅ , 𝜎2
⟨𝑂𝑔−1⟩, 1, 𝜎

2
⟨𝑂𝑔+1⟩, ⋅ ⋅ ⋅ , 𝜎2

⟨𝑂𝑁𝑁𝑏
⟩} is the

ordered a priori covariance matrix of x′ with its 𝑔-th element
set as 1. Combining (16) and (17) leads to

e𝑔 = R𝑔𝝐𝑔 (18)

with

𝝐𝑔 = Σ′
𝑔H

ℎ
[
HΣ′

𝑔H
ℎ + 𝜎2

𝑣I𝑀(𝑁𝑏+𝐿−1)

]−1 (
y −Hx̄′

𝑔

)
− (

x′ − x̄′
𝑔

)
(19)

The autocorrelation matrix of 𝝐𝑔 can be calculated as

Σ𝜖𝑔 = Σ′
𝑔 −Σ′

𝑔H
ℎ
[
HΣ′

𝑔H
ℎ + 𝜎2

𝑣I𝑀(𝑁𝑏+𝐿−1)

]−1
HΣ′

𝑔

=

[
Σ′

𝑔
−1

+
1

𝜎2
𝑣

HℎH

]−1

(20)

where the second equality is obtained with the identity (A+
CBCℎ)−1 = A−1 − A−1C(B−1 + CℎA−1C)−1CℎA−1.
Based on (18) and (20), the autocorrelation matrix of e𝑔 can
be expressed by

Σ𝑒𝑔 = R𝑔

[
Σ′

𝑔
−1

+
1

𝜎2
𝑣

HℎH

]−1

Rℎ
𝑔 . (21)

Since 𝜎2
𝑒𝑔 = trace(Σ𝑒𝑔 ), the minimization of the mean

square error is equivalent to minimizing trace(Σ𝑒𝑔 ). In ad-
dition, the solution that minimizes trace(Σ𝑒𝑔 ) should also
satisfy the successive interference cancellation constraint, i.e.,
R𝑔 = D𝑔 + I𝑁𝑁𝑏

needs to be an upper triangular matrix
with unit diagonal elements. The solution satisfying the above
conditions is found as [26]

R𝑔 = Uℎ
𝑔 (22)

where U𝑔 ∈ 𝒞𝑁𝑁𝑏×𝑁𝑁𝑏 is a lower triangular matrix with
unit diagonal elements, and it is obtained from the Cholesky
decomposition of Σ′

𝑔
−1

+ 1
𝜎2
𝑣
HℎH as

Σ′
𝑔
−1

+
1

𝜎2
𝑣

HℎH = U𝑔Δ𝑔U
ℎ
𝑔 (23)

with Δ𝑔 ∈ 𝒞𝑁𝑁𝑏×𝑁𝑁𝑏 being a diagonal matrix. The solution
for the feedforward and feedback filters are

C𝑔 = Uℎ
𝑔Σ

′
𝑔H

ℎ
[
HΣ′

𝑔H
ℎ + 𝜎2

𝑣I𝑀(𝑁𝑏+𝐿−1)

]−1
(24a)

D𝑔 = Uℎ
𝑔 − I𝑁𝑁𝑏

(24b)

C. LLR Calculation Based on Equalized Symbols

The calculation of the bit LLRs based on the equalized
symbols is discussed in this subsection. Based on (16), an
equivalent equalization model is obtained as

z𝑔 ≜ C𝑔(y −Hx̄′
𝑔) = R𝑔

(
x̂′ − x̄′

𝑔

)
+ e𝑔. (25)

The 𝑔-th element in z𝑔 is expressed by

𝑧𝑔 = 𝑥⟨𝑂𝑔⟩ +
𝑁𝑁𝑏∑
𝑙=𝑔+1

𝑟𝑔,𝑙
[
�̂�⟨𝑂𝑙⟩ − 𝑥⟨𝑂𝑙⟩

]
+ 𝑒𝑔 (26)

where 𝑟𝑔,𝑙 is the (𝑔, 𝑙)-th element of R𝑔 with 𝑟𝑔,𝑔 = 1. The
APP of 𝑥⟨𝑂𝑔⟩ conditioned on 𝑧𝑔 is

𝑃
(
𝑥⟨𝑂𝑔⟩∣𝑧𝑔

)
=

𝑝
(
𝑧𝑔∣𝑥⟨𝑂𝑔⟩

)
𝑃
(
𝑥⟨𝑂𝑔⟩

)
𝑝 (𝑧𝑔)

. (27)

With the common approximation that 𝑒𝑔 in (26) is a zero-
mean complex Gaussian random variable, we determine the
conditional probability as

𝑝
(
𝑧𝑔∣𝑥⟨𝑂𝑔⟩

)
=

1

𝜋𝛼2
𝑔

exp

{
−∣𝛽𝑔∣2

𝛼2
𝑔

}
(28)

where 𝛽𝑔 = 𝑧𝑔 − 𝑥⟨𝑂𝑔⟩ −
∑𝑁𝑁𝑏

𝑙=𝑔+1 𝑟𝑔,𝑙
[
�̂�⟨𝑂𝑙⟩ − �̄�⟨𝑂𝑙⟩

]
. Since

Σ𝑒𝑔 = Δ−1
𝑔 , the variance of 𝑒𝑔 is 𝛼2

𝑔 = 𝛿−1
𝑔,𝑔 with 𝛿𝑔,𝑔

being the 𝑔-th diagonal element of Δ𝑔. The symbol a priori
probability, 𝑃

(
𝑥⟨𝑂𝑔⟩

)
, in (27) can be calculated based on

the bit a priori probabilities as shown before, and it is
initialized as 𝑃

(
𝑥⟨𝑂𝑔⟩ = 𝜒𝑞

)
= 1

𝑄 during the first iteration.
The value of 𝑝(𝑧𝑔) can be obtained by using the normalization∑𝑄

𝑞=1 𝑃
(
𝑥⟨𝑂𝑔⟩ = 𝜒𝑞∣𝑧𝑔

)
= 1.

Once the symbol APP 𝑝
(
𝑥⟨𝑂𝑔⟩∣𝑧𝑔

)
is obtained, the APP of

the demapping bits
{
𝑐𝑛𝑔,(𝑘𝑔−1) log2 𝑄+𝑝

}log2 𝑄

𝑝=1
of the symbol

𝑥⟨𝑂𝑔⟩, can be calculated as follows

𝑃
[
𝑐𝑛𝑔 ,(𝑘𝑔−1) log2 𝑄+𝑝 = 𝑏∣𝑧𝑔

]
=

∑
𝑥⟨𝑂𝑔⟩∈𝒮(𝑏)

𝑝

𝑃
(
𝑥⟨𝑂𝑔⟩∣𝑧𝑔

)
(29)

for 𝑝 = 1, 2, ⋅ ⋅ ⋅ , log2 𝑄, where (𝑛𝑔, 𝑘𝑔) = ⟨𝑂𝑔⟩ and 𝒮(𝑏)
𝑝 ≜

{𝜒𝑞∣𝜒𝑞 ∈ 𝒮 : 𝑐𝑞,𝑝 = 𝑏} with 𝑏 ∈ {0, 1}. The LLR of the code
bit can then be calculated as

Λ
[
𝑐𝑛𝑔 ,(𝑘𝑔−1) log2 𝑄+𝑝

]
= ln

∑
𝑥⟨𝑂𝑔⟩∈𝒮(0)

𝑝

𝑃
(
𝑥⟨𝑂𝑔⟩∣𝑧𝑔

)
∑

𝑥⟨𝑂𝑔⟩∈𝒮(1)
𝑝

𝑃
(
𝑥⟨𝑂𝑔⟩∣𝑧𝑔

) . (30)

for 𝑝 = 1, 2, ⋅ ⋅ ⋅ , log2 𝑄.
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Finally, since it is computationally expensive to calcu-
late the sequence-based symbol APP 𝑃 (𝑥⟨𝑂𝑔⟩∣y), the APP
𝑃
(
𝑥⟨𝑂𝑔⟩∣𝑧𝑔

)
in (27) has been adopted for calculating the

tentative soft decision, �̂�⟨𝑂𝑔⟩, in (15).

D. Low-Complexity Implementation of The Soft-Decision
BDFE

One of the main computational burdens of the soft-decision
BDFE comes from the calculation of the equalizer matrices in
(24a) and (24b), which need to be updated for each symbol.
The calculation of the matrices C𝑔 and D𝑔 involves one
Cholesky decomposition in (23), and one matrix inversion and
three matrix multiplications in (24a), resulting in a computa-
tional complexity on the order of 𝒪((𝑁𝑁𝑏)

3). The overall
complexity over the entire block is then on the order of
𝒪((𝑁𝑁𝑏)

4), which is prohibitively high when 𝑁𝑏 gets large. It
is desirable to develop a low-complexity implementation. We
propose to reduce the computation complexity of the MIMO
BDFE from two perspectives described as follows.

First, the symbol-dependent equalizer matrices, C𝑔 and
D𝑔 , are replaced with constant symbol-independent matrices,
C and D, to achieve a low-complexity approximation of
the soft-decision MIMO BDFE. A close observation on (24)
reveals that the symbol-wise filter update is solely due to
the dependence on the second-order a priori information
Σ′

𝑔 . Therefore, computational complexity can be significantly
reduced by replacing Σ′

𝑔 with the constant autocovariance
matrix Σ′ = diag{𝜎2

⟨𝑂1⟩, 𝜎
2
⟨𝑂2⟩, ⋅ ⋅ ⋅ , 𝜎2

⟨𝑂𝑁𝑁𝑏
⟩}, which leads

to the constant filter matrices, C and D, for all the symbols
to be equalized. It is demonstrated through simulations that
employing constant equalizer matrices for all the symbols
does not apparently degrade the equalization performance. It
is noted that with the constant filter matrices C and D, the
computations of (25) and (26) over the entire block is also
simplified significantly, as shown in the next section on the
complexity analysis.

Second, fast algorithm is employed to further reduce the
computation complexity. Based on (24a), the calculation of
the constant feedforward filter C is given as

C = RΣ′Hℎ
[
HΣ′Hℎ + 𝜎2

𝑣I𝑀(𝑁𝑏+𝐿−1)

]−1

=
1

𝜎2
𝑣

R

[
Σ′−1

+
1

𝜎2
𝑣

HℎH

]−1

Hℎ. (31)

With the Cholesky decomposition, Σ′−1
+ 1

𝜎2
𝑣
HℎH =

UΔUℎ, (31) can be simplified to

C =
1

𝜎2
𝑣

Δ−1U−1Hℎ (32)

Since Δ is a diagonal matrix, it is easy to calculate Δ−1. As
of U−1, there is no need to evaluate it explicitly. Instead, based
on the fact that the matrix U is a lower triangular matrix with
unit diagonal, the back-substitution method can be employed
to solve the following linear system [27]

UA =
1

𝜎2
𝑣

Hℎ (33)

where A ∈ 𝒞𝑁𝑁𝑏×𝑀(𝑁𝑏+𝐿−1) is the unknown matrix to be
solved. Once A is obtained, the feedforward filter C can be

calculated as

C = Δ−1A (34)

The low-complexity implementation of the proposed soft-
decision MIMO BDFE is summarized in Table I.

TABLE I
LOW-COMPLEXITY SOFT-DECISION MIMO BDFE WITH

RELIABILITY-BASED ORDERING

INPUT:
- Received sample vector y of an entire block as in (3);

- A priori bit LLRs
{
Λ𝑎[𝑐𝑛,(𝑘−1)log2𝑄+𝑝]

}
for the entire block.

INITIALIZATION:

- Compute the a priori mean
{
�̄�𝑛,𝑘

}
and variance

{
𝜎2
𝑛,𝑘

}
for the

entire block according to (6a) and (6b);

- Compute the a priori reliability
{
𝜌𝑛,𝑘=1/𝜎2

𝑛,𝑘

}
for the block,

and obtain the ordering 𝑶 by following the procedure in (8)–(12);
- Perform Cholesky decomposition as Σ′−1+ 1

𝜎2
𝑣
HℎĤ=UΔUℎ to

obtain the feedback filter matrix D = U− I𝑁𝑁𝑏
, then obtain the

feedforward equalizer matrix C according to (32)–(34);
- Compute w = C(y −Hx̄′), and initialize the soft symbol decision

vector x̂′ to be zero.

SOFT-DECISION MIMO BDFE ALGORITHM:

FOR 𝑔 = 𝑁𝑁𝑏 TO 1 DO
- Compute 𝑧𝑔 = 𝑤𝑔 + �̄�⟨𝑂𝑔⟩c

ℎ
𝑔h𝑔 , with 𝑤𝑔 , cℎ𝑔 , and h𝑔 as the

𝑔-th element, row, and column of w, C, and H, respectively;

- Compute the APP’s
{
𝑃
(
𝑥⟨𝑂𝑔⟩ = 𝜒𝑞 ∣𝑧𝑔

)}𝑄

𝑞=1
in (27)–(28);

- Compute the bit LLRs
{
Λ[𝑐𝑛𝑔,(𝑘𝑔−1)log2𝑄+𝑝]

}log2𝑄

𝑝=1
in (30);

- Compute �̂�⟨𝑂𝑔⟩ based on the above APP’s, and use it to update
the 𝑔-th element in x̂′.

END

OUTPUT:

- Bit LLRs
{
Λ
[
𝑐𝑛,(𝑘−1)log2𝑄+𝑝

]}
of the entire block.

IV. COMPLEXITY ANALYSIS

In this section, the complexity of the proposed soft-decision
BDFE with reliability-based ordering is discussed and com-
pared with a soft-decision LE, as a benchmark of low-
complexity equalization. An 𝑁×𝑀 MIMO block transmission
system with a block size 𝑁𝑏 is studied. It is assumed that
𝑀 ≥ 𝑁 and all the 𝑀𝑁 subchannels have the same length 𝐿.
For LE, it is assumed that the equalizer has 𝐾 = 𝐾1+𝐾2+1
tap vectors (each with length 𝑀 ), spanning over the index
range [−𝐾1,𝐾2]. Without loss of generality, let 𝐾1 = 𝐾2 =
𝛼𝐿 such that 𝐾 = 2𝛼𝐿 + 1, where 𝛼 is a scaling factor
reflecting the size of the sliding window. For the fairness of
comparison, constant equalizer taps [8] are also adopted for
LE. The complexity is measured by the number of complex
multiplications (CM).

For both equalization methods, the main complexity arises
from three sources: the calculation of the equalizer taps,
the filtering operation to obtain symbol estimations, and the
calculation of bit LLRs based on the estimated symbols.
For the LLR calculation, the procedures in (29)–(30) are
the same for both equalizations. The difference only lies
in the calculation of the conditional probability in (28), or
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equivalently, the conditional mean and variance of the complex
Gaussian distribution. For BDFE, the conditional mean and
variance have already been obtained during the Cholesky de-
composition and the filtering operation. For LE, the calculation
of the conditional mean and variance incurs a complexity on
the order of 𝒪(𝑀𝑁𝐾𝑁𝑏). This complexity, however, is small
compared to other operations. We next focus on the first two
computational sources for both BDFE and LE.

The complexity of calculating the constant feedforward and
feedback matrices C and D for BDFE is dominated by the
Cholesky decomposition of Σ′−1

+ 1
𝜎2
𝑣
HℎH in (31) and the

back-substitution operation in (33), which incur complexities
on the order of 𝒪(𝑁3𝑁3

𝑏 ) and 𝒪(𝑀𝑁2𝑁2
𝑏 (𝑁𝑏 + 𝐿 − 1)),

respectively. It is noted that when H = F (refer to (3) and
(13)) in the first iteration, the block-Toeplitz structure shown
in (4) can be utilized to reduce the complexity of Cholesky
decomposition to the order of 𝒪((𝑁𝑁𝑏)

2) [27]. The filtering
operation in (25)–(26) incurs a complexity on the order of
𝒪(𝑀𝑁𝑁𝑏(𝑁𝑏 + 𝐿 − 1)). Combining the two computational
complexities together, the overall complexity for the BDFE
is dominated by the filter matrices calculation and is on the
order of 𝒪(𝑀𝑁2𝑁2

𝑏 (𝑁𝑏 + 𝐿− 1)).
For LE, the calculation of the equalizer tap vector involves

an inversion of a matrix with size min(𝑀𝐾,𝑁(𝐾 +𝐿− 1)),
where the minimum operation is due to the use of matrix
inversion lemma during the equalizer tap vector calcula-
tion [28]. Let 𝜆 = min(𝑀𝐾,𝑁(𝐾 + 𝐿 − 1)), and the
complexity is thus on the order of 𝒪(𝜆3). The filtering
operation over the entire block causes a complexity on the
order of 𝒪(𝑀𝑁2𝑁𝑏𝐾(𝐾 + 𝐿 − 1)). Combining the two
complexities together, an overall complexity is on the order
of 𝒪(max(𝜆3,𝑀𝑁2𝑁𝑏𝐾(𝐾 + 𝐿− 1)).

From the analysis above, the complexity of BDFE is mainly
determined by the block size 𝑁𝑏, while the complexity of LE
is a function of the channel length 𝐿, the parameter 𝐾 (or 𝛼),
and the block size 𝑁𝑏. The complexity comparison between
BDFE and LE is then determined by the system parameters
𝑁𝑏, 𝐿 and 𝐾 . We next compare the complexity between LE
and BDFE with three examples.

In the first example, the block size 𝑁𝑏 and the scaling factor
𝛼 are fixed as 𝑁𝑏 = 100 and 𝛼 = 2, while the channel length
𝐿 changes over the range [5, 35]. In the second example, the
block size 𝑁𝑏 and the channel length 𝐿 are fixed as 𝑁𝑏 =
100 and 𝐿 = 15, while 𝛼 ∈ [1, 5]. In both examples, a 2 ×
2 MIMO system has been studied. The comparison results
for examples 1 and 2 are demonstrated in Fig. 3. In the top
subfigure (example 1), the channel length 𝐿 has negligible
effect on the complexity of BDFE, yet the complexity of LE
increases by about two orders of magnitude from 𝐿 = 5 to
𝐿 = 35. At 𝐿 = 5, the BDFE complexity is more than one
order of magnitude higher than the LE complexity. However,
when 𝐿 ≥ 10, the two complexities are comparable to each
other. When 𝐿 ≥ 25, LE has a higher complexity than BDFE.
From the bottom subfigure (example 2), the BDFE complexity
is independent of 𝛼, while the LE complexity increases with
the size of the sliding window.

In the third example, the block size 𝑁𝑏 changes in the range
of [50, 150] and the channel length has two choices: 𝐿 = 15
and 𝐿 = 20. The scaling factor for LE is fixed as 𝛼 = 2. A
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Fig. 3. Complexity comparison between LE and BDFE: examples 1 and 2.
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Fig. 4. Complexity comparison between LE and BDFE: example 3.

2 × 4 MIMO system is investigated. The comparison results
are demonstrated in Fig. 4.

Obviously, the BDFE complexity increases much faster than
the LE complexity with the block size 𝑁𝑏. This observation
is expected, because the BDFE complexity is cubic in 𝑁𝑏,
while the LE complexity is linear in 𝑁𝑏. However, the largest
gap between the LE and BDFE complexities is within one
order of magnitude over the range 𝑁𝑏 ∈ [50, 150]. Since block
transmission is primarily designed for fast-fading environment
[18], the choice of block size 𝑁𝑏 shall not be too large so as
to guarantee the time-invariant assumption of the channel. As
a result, the proposed BDFE has a comparable complexity to
LE. Finally, it is again observed that the channel length 𝐿
has negligible effects on the BDFE complexity, while the LE
complexity increases considerably with 𝐿.

V. SIMULATION RESULTS

Simulation results are presented in this section to demon-
strate the performance of the proposed reliability-based turbo
detection scheme. The data is transmitted in packets. Each
packet is independently encoded by a rate 1/2 non-systematic
convolutional code with a constraint length 4 and a generator
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Fig. 5. Performance comparison among the different orderings (2×2 MIMO,
Proakis Type A Channel, QPSK).

polynomial [𝐺1, 𝐺2] = [17, 13]oct. The encoded packet is
further divided into blocks for transmission. The soft-decision
MIMO BDFE is operated over blocks, and the MAP channel
decoding is performed over an entire packet.

First we demonstrate the performance gain contributed
by the reliability-based ordering for the BDFE. A 2 × 2
MIMO system using QPSK modulation is studied. Each
packet carries 2,000 symbols, which are divided into
20 blocks with size 𝑁𝑏 = 100. The MIMO channel is
generated with the Proakis Type A channel [25] as f1,1 =
[0.04,−0.05, 0.07,−0.21,−0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07],
f1,2 = f1,1 ≪ 3, f2,1 = f1,1 ≪ 6, f2,2 = f1,1 ≪ 9, where
f𝑚,𝑛 denotes the subchannel between the 𝑛-th transmit
antenna and the 𝑚-th receive antenna. For the group-wise
ordering, different choices of group sizes 𝐿𝑔 = 1, 𝐿𝑔 = 5,
𝐿𝑔 = 𝐿 = 11, and 𝐿𝑔 = 𝑁𝑏 = 100 have been selected leading
to 𝑁𝑔 = 100, 𝑁𝑔 = 20, 𝑁𝑔 = 10 and 𝑁𝑔 = 1, respectively.
The choice of 𝐿𝑔 = 𝑁𝑏 corresponds to the global ordering
over the entire block. It is also noted that for the choice of
𝐿𝑔 = 11, the last group contains 𝑁 × mod(𝑁𝑏, 𝐿𝑔) = 2
symbols. The simulation results are shown in Fig. 5.

Since there is no a priori reliability information available in
the first iteration and the bit error rate (BER) curves in all cases
overlap, only one curve is plotted for the first iteration. We
have two observations from the figure. First, the reliability-
based ordering leads to apparent performance gain over the
non-ordering case. At the BER level of 10−3, more than 1 dB
performance gain is achieved for the choice of 𝐿𝑔 > 1. When
𝐿𝑔 = 1, which corresponds to the ordering in the 1-D space
domain only, there is still performance gain over the non-
ordering case, yet it is inferior to the case that the ordering is
performed in the 2-D space-time domain. Second, when 𝐿𝑔 >
1, different choices of group sizes lead to almost identical
performance. Therefore, the group-wise ordering scheme has
almost the same performance as the global ordering, but with
a lower complexity.

Next we compare the performance of the proposed turbo
detection scheme with that of the linear turbo detection
scheme [14]. A 2 × 2 MIMO system with 8PSK modulation
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Fig. 6. Performance comparison between LE and BDFE (2 × 2 MIMO,
uniform PDP with 𝐿 = 10, 8PSK).

is considered, and the MIMO channel has a uniform PDP
with a channel length of 𝐿 = 10. Each packet carries 6,000
symbols, which are divided into 60 blocks with a block size
𝑁𝑏 = 100. The MIMO channel remains constant over each
packet while changes from packet to packet. In the simulation,
6,000 packets have been simulated. A group size 𝐿𝑔 = 𝐿 = 10
is used for the reliability-based ordering. The parameters 𝐾1

and 𝐾2 are set as 𝐾1 = 𝐾2 = 𝐿 for LE. The BER results
of the two detection schemes are compared in Fig. 6. From
the figure, the proposed detection significantly outperforms the
linear turbo detection, and has achieved more than 2 dB gain
in all the three iterations.

Fig. 7 compares the performance of the proposed BDFE
with the optimum MAP equalizer in a 2 × 2 MIMO system
with BPSK modulation. Each packet carries 2,000 symbols,
and the block size is 𝑁𝑏 = 100. The MIMO channel has
a length of 𝐿 = 3, and is generated with the Proakis
type B [25] channel as f1,1 = [0.407, 0.815, 0.407], f1,2 =
[0.815, 0.407, 0.407], f2,1 = [0.407, 0.407, 0.815], and f2,2 =
[0.407,−0.407, 0.815]. With a BPSK modulation, there are
𝑄𝑁(𝐿−1) = 16 trellis states for the MAP equalization. The
result shown in Fig. 7 is simulated with 1,000 packets. It is
observed that when the BER equals to 10−3, the proposed
BDFE is only about 0.5 dB from the optimum MAP equal-
izer. In addition, only marginal performance improvement is
observed by increasing the number of iterations from 4 to 5.
Therefore, the proposed BDFE achieves a BER performance
close to the optimum MAP equalizer.

VI. CONCLUSION

A reliability-based turbo detection scheme with successive
soft interference cancellation was proposed for MIMO systems
with frequency-selective fading. Compared with existing low-
complexity turbo detection schemes, the proposed scheme has
two advantages. First, it utilized the non-linear structure of the
BDFE, which enabled SSIC thus led to a better performance
than the linear equalization structure with a similar complexity.
Second, it introduced a novel group-wise reliability-based
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Fig. 7. Performance comparison between BDFE and MAP equalization (2×2
MIMO, Proakis Type B Channel, BPSK).

ordering scheme to minimize the effect of error propagation
in SSIC. Compared with conventional ordering schemes, the
proposed ordering method has a much lower complexity due
to the low cost associated with the calculation of the reliability
information, and the low complexity of a group-wise ordering
operation. Moreover, the ordering is updated dynamically as
the turbo iterations progress. It was demonstrated through
simulations that performance gain was achieved with only a
small ordering overhead, and the performance of the proposed
scheme approached the optimum performance of the MAP
detection.
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