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Oversampled Orthogonal Frequency Division
Multiplexing in Doubly Selective Fading Channels

Jingxian Wu, Member, IEEE, and Yahong Rosa Zheng, Senior Member, IEEE

Abstract—A new oversampled orthogonal frequency division
multiplexing (OOFDM) scheme is proposed for doubly selective
fading environment. The proposed OOFDM scheme employs
oversampling in the time domain and linear processing in the
frequency domain, both at the receiver without changing the
structure of conventional orthogonal frequency division mul-
tiplexing (OFDM) transmitters. The time-frequency processing
enables a two dimensional Doppler-frequency grid of the fading
channel, such that each data symbol is modeled equivalently as
being transmitted at multiple subcarriers and various Doppler
spreads simultaneously, while retaining the same spectral ef-
ficiency as conventional OFDM systems. Optimum combining
ensures coherent combining of the data samples spread over the
Doppler-frequency grid and non-coherent combining of inter-
carrier interference (ICI) components caused by time varying
fading. Theoretical error probabilities of the OOFDM systems
are derived by analyzing the statistical properties of Doppler-
frequency fading coefficients and noise sample correlations. Both
theoretical analysis and computer simulation show that the new
system with an oversampling factor of two outperforms the
conventional OFDM system by as much as 7 dB.

Index Terms—OFDM, oversampled OFDM, multipath diver-
sity, Doppler diversity, ICI.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) has emerged as the leading transmission

technique for a wide range of wireless and wireline
communication standards [1]. The conventional OFDM
system is designed primarily for static or quasi-static
channels, where the channel response remains constant
for at least one symbol period [2] – [4]. However, high
mobility broadband communication dictates an operating
environment of doubly selective (both time selective and
frequency selective) fading. Time selective fading introduces
severe Doppler spread that destroys subcarrier orthogonality
and causes inter-carrier interference (ICI) [5]. Various signal
processing techniques, such as Doppler domain equalization
[6] – [8], precoding [2] and [9], or time-frequency localization
[10], have been developed to suppress the impairments caused
by ICI.

Doubly selective fading, if handled properly, can also be
exploited to benefit the OFDM system design to collect
diversity gains. Doppler spread caused by fading time variation
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introduces Doppler diversity [11], [12]; while time dispersion
due to frequency selective fading leads to multipath diversity
[2] – [4]. OFDM systems are inherently superior to single
carrier systems in terms of Doppler diversity thanks to its
longer symbol period [12]. On the other hand, no multipath
diversity can be achieved by conventional uncoded OFDM
systems, because uncorrelated narrow band data streams are
transmitted at different subcarriers [4]. So far, most works
in the literature resort to linear precoding/decoding or zero-
padding in OFDM to achieve multipath diversity, at the cost
of spectral efficiency and/or system complexity [2] – [4].

Time domain oversampling, or fractionally spaced sam-
pling, has been extensively studied for single carrier systems
[13] – [15]. However, very limited works on fractionally
spaced receiver are available for multicarrier systems [16]
– [20]. In OFDM systems, time domain oversampling has
been used mainly as a tool to facilitate the analysis of peak
to average power ratio (PAPR) of the time domain OFDM
signals [16]. In [17] and [18], the oversampled OFDM signals
are used to assist the blind estimation of quasi-static fading
channels. Recently, it has been shown in [19] that fractionally
spaced sampling of the time domain OFDM signal leads to
potential multipath diversity. In [20], additional signal-to-noise
ratio (SNR) gain in oversampled OFDM system is achieved
by extending the oversampling factor from integers to rational
numbers. All of the aforementioned works are only applicable
to OFDM systems in quasi-static fading channels.

In this paper, we propose a new oversampled OFDM
(OOFDM) receiver structure for both quasi-static and doubly
selective fading channels. The proposed OOFDM system em-
ploys oversampling in the time domain and linear processing
in the frequency domain. We develop a new system model with
an equivalent two dimensional (2D) representation: the fre-
quency response due to time varying fading is denoted as the
Doppler domain, and the frequency response due to frequency
selective fading as the frequency domain. The new Doppler-
frequency representation enables a new channel model of the
OOFDM system, where each data symbol is treated as if it
is transmitted over multiple subcarriers and various Doppler
spreads simultaneously. Based on the new channel model,
optimum and sub-optimum receivers are developed to perform
coherent combining of the received data samples spread over
the Doppler-frequency grid, and this simultaneously harvests
the multipath diversity and Doppler diversity inherent in
doubly selective fading channels. At the mean time, coherent
combining of the data samples renders non-coherent combin-
ing of ICI components, therefore achieving better symbol error
performance than conventional OFDM systems. Theoretical
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error probability expressions of the proposed OOFDM system
are derived by analyzing the statistical properties of Doppler-
frequency channel coefficients and noise sample correlations.

In the remainder of this paper, the OOFDM system model
is described in Section II. Section III proposes a Doppler-
frequency domain linear receiver. An optimum receiver for
the OOFDM system in quasi-static frequency selective fading
is presented in Section IV. The optimum OOFDM receiver for
doubly selective fading channel is computationally expensive.
Therefore, a sub-optimum receiver employing block decision
feedback equalization (BDFE) is proposed in Section V.
Simulation results are given in Section VI, and Section VII
concludes the paper.

Throughout the paper, the superscripts (⋅)𝑇 and (⋅)𝐻 denote
matrix transpose and Hermitian, respectively. The superscript
(⋅)∗ denotes the conjugate. The complex matrix space of
size 𝑀 × 𝑁 is denoted as 𝒞𝑀×𝑁 , and 𝔼(⋅) denotes the
mathematical expectation. The modulation constellation set is
denoted as 𝒮.

II. SYSTEM MODEL

The baseband representation of the new OOFDM structure
is shown in Fig. 1, where the baseband equivalent channel
impulse response (CIR) of the doubly selective fading channel,
𝑐(𝑡, 𝜏), can be viewed as the response of the channel at time
𝑡 to an impulse input at time 𝑡− 𝜏 . At the transmitter, a block
of 𝑁 data symbols, s = [𝑠(0), ⋅ ⋅ ⋅ , 𝑠(𝑁 − 1)]𝑇 ∈ 𝒮𝑁×1, are
modulated onto 𝑁 orthogonal subcarriers through the basis
functions 𝜙𝑛(𝑡) = 1√

𝑁
𝑒𝑗2𝜋𝑛𝐹0𝑡, for 0 ≤ 𝑡 ≤ 𝑇0 and 𝑛 =

0, ⋅ ⋅ ⋅ , 𝑁 − 1, where 𝐹0 = 1
𝑇0

is the subcarrier spacing, and
𝑇0 is the duration of one OFDM symbol. The multicarrier
modulated signal, 𝑥(𝑡) =

∑𝑁−1
𝑛=0 𝑠(𝑛)𝜙𝑛(𝑡), are sampled at

the transmitter at a sampling period of 𝑇1 = 𝑇0

𝑁 , which yields
𝑁 time domain samples, x = [𝑥(0), 𝑥(1), ⋅ ⋅ ⋅ , 𝑥(𝑁 − 1)]𝑇 ,
per symbol period. The resulting time domain samples can be
viewed as the inverse discrete Fourier transform (IDFT) of s
as x = F𝐻

𝑁
s, where F𝑁 ∈ 𝒞𝑁×𝑁 is the normalized 𝑁 -point

discrete Fourier transform (DFT) matrix with the (𝑚,𝑛)-th

element being (F𝑁 )𝑚,𝑛 = 1√
𝑁
exp

[
−𝑗2𝜋 (𝑚−1)(𝑛−1)

𝑁

]
.

Cyclic prefix are inserted in the time domain to avoid inter-
block interference. The prefixed time domain samples are
passed through a transmit filter, 𝑝1(𝑡), and then transmitted
to the channel. At the receiver, the received signal is passed
through a receive filter, 𝑝2(𝑡). Define the continuous-time com-
posite impulse response of the channel as 𝑔(𝑡, 𝜏) = 𝑝1(𝜏) ⊙
𝑐(𝑡, 𝜏) ⊙ 𝑝2(𝜏), where 𝑎(𝜏) ⊙ 𝑏(𝑡, 𝜏) =

∫
𝑏(𝑡, 𝛼)𝑎(𝜏 − 𝛼)𝑑𝛼

representing the convolution of time varying signals. The time
variation of the channel follows a Doppler spectrum. The
received time domain signal can then be represented as

𝑦(𝑡) =

+∞∑
𝑛=−∞

𝑥(𝑛)𝑔(𝑡, 𝑡− 𝑛𝑇1) + 𝑧(𝑡), (1)

where 𝑧(𝑡) = 𝑝2(𝑡) ⊙ 𝑣(𝑡) is the noise component at the
output of the receive filter, with 𝑣(𝑡) being additive white
Gaussian noise (AWGN) with variance 𝑁0, and 𝑥(𝑛) is the
cyclic-prefixed time domain samples with a sample period 𝑇1.

The output of the receive filter is sampled at the time instant
𝑡 = 𝑛𝑇2, where 𝑇2 = 𝑇1/𝑢 is the sampling period at the
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Fig. 1. The block diagram of the proposed oversampled OFDM system.

receiver, with the oversampling factor, 𝑢, being an integer.
The sampled output is

𝑦
𝑇
(𝑛)=

𝑢𝐿−1∑
𝑙=0

𝑥
𝑇
(𝑛−𝑙)𝑔

𝑇
(𝑛, 𝑙)+𝑧

𝑇
(𝑛), 𝑛 = 0,⋅ ⋅ ⋅ ,𝑢𝑁 − 1. (2)

where 𝑦
𝑇
(𝑛) = 𝑦(𝑛𝑇2) and 𝑧

𝑇
(𝑛) = 𝑧(𝑛𝑇2) are the 𝑇2-

spaced samples of the received signals and noise, respectively,
and 𝑔

𝑇
(𝑛, 𝑙) = 𝑔(𝑛𝑇2, 𝑙𝑇2) is the discrete-time CIR with

𝑢𝐿 channel taps at 𝑇2-spacing. The channel length of the
oversampled discrete-time CIR is assumed to be an integer
multiple of the oversampling factor 𝑢. This condition can
always be met by padding zeros to the CIR. The subscript
(⋅)

𝑇
denotes 𝑇2-spaced time domain samples, and 𝑥

𝑇
(𝑛) is

the oversampled version of 𝑥(𝑛) as 𝑥
𝑇
(𝑛) = 𝑥(𝑛/𝑢), if 𝑛/𝑢

is an integer, and 0 otherwise.
It is assumed that the receiver has perfect knowledge of the

discrete-time CIR, 𝑔
𝑇
(𝑛, 𝑙). The system equation in (2) can

also be represented in a matrix format as

y
𝑇
= G

𝑇
x+ z

𝑇
, (3)

where y
𝑇

= [𝑦
𝑇
(0), ⋅ ⋅ ⋅ , 𝑦

𝑇
(𝑢𝑁 − 1)]𝑇 ∈ 𝒞𝑢𝑁×1,

z𝑇 = [𝑧𝑇 (0), ⋅ ⋅ ⋅ , 𝑧𝑇 (𝑢𝑁 − 1)]𝑇 ∈ 𝒞𝑢𝑁×1, and G𝑇 =
[g1,g𝑢+1,g2𝑢+1, ⋅ ⋅ ⋅ ,g(𝑁−1)𝑢+1

] ∈ 𝒞𝑢𝑁×𝑁 , with g𝑘 ∈
𝒞𝑢𝑁×1 being the 𝑘-th column of the matrix G defined in
(4).

The system performance depends on the properties of the
discrete-time CIR, 𝑔

𝑇
(𝑛, 𝑙), and noise sample, 𝑧

𝑇
(𝑛). The

statistical properties of 𝑔
𝑇
(𝑛, 𝑙) and 𝑧

𝑇
(𝑛) are summarized

in the following two Lemmas [21].
Lemma 1: For a channel undergoing wide sense stationary

uncorrelated scattering (WSSUS) time varying and frequency
selective fading, the discrete time CIR, 𝑔

𝑇
(𝑛, 𝑙), is zero-mean

complex Gaussian distributed with covariance given by

𝔼
[
𝑔
𝑇
(𝑛1, 𝑙1)𝑔

∗
𝑇
(𝑛2, 𝑙2)

]
=𝐽0 [2𝜋𝐹𝑑(𝑛1 − 𝑛2)𝑇2] 𝜌(𝑙1, 𝑙2), (5)

where 𝐽0(𝑥) is the zero-order Bessel function of the first kind,
𝐹𝑑 is the maximum Doppler spread, and 𝜌(𝑙1, 𝑙2) represents
the correlation between the channel taps, with

𝜌(𝑙1, 𝑙2)=

∫ +∞

−∞
𝑅𝑝1𝑝2(𝑙1𝑇2 − 𝜇)𝑅∗

𝑝1𝑝2(𝑙2𝑇2 − 𝜇)𝐺(𝜇)𝑑𝜇, (6)

where 𝑅𝑝1𝑝2(𝑡) = 𝑝1(𝑡) ⊙ 𝑝2(𝑡), and 𝐺(𝜇) is the normalized
channel power delay profile with

∫ +∞
−∞ 𝐺(𝜇)𝑑𝜇 = 1. ■

Lemma 2: The time domain noise vector, z
𝑇

, is zero-mean
complex Gaussian distributed with a covariance matrix R𝑧

𝑇
=

𝔼
(
z

𝑇
z𝐻

𝑇

)
= 𝑁0R𝑝, where 𝑁0 is the variance of AWGN. The

(𝑚,𝑛)-th element of the matrix R𝑝 ∈ 𝒞𝑢𝑁×𝑢𝑁 is (R𝑝)𝑚,𝑛 =

𝑅𝑝2𝑝2(𝑚− 𝑛), where 𝑅𝑝2𝑝2(𝑛) =
∫ +∞
−∞ 𝑝2(𝑛𝑇2 + 𝜏)𝑝2(𝜏)𝑑𝜏

is the autocorrelation function of the receive filter, 𝑝2(𝑡). ■
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G =

⎛
⎜⎜⎜⎝

𝑔𝑇 (0, 0) 0 ⋅ ⋅ ⋅ 𝑔𝑇 (0, 𝑢𝐿− 1) ⋅ ⋅ ⋅ 𝑔𝑇 (0, 1)
𝑔
𝑇
(1, 1) 𝑔

𝑇
(1, 0) ⋅ ⋅ ⋅ 0 𝑔

𝑇
(1, 𝑢𝐿− 1) ⋅ ⋅ ⋅

...
. . .

. . .
. . .

. . .
...

0 ⋅ ⋅ ⋅ 𝑔
𝑇
(𝑢𝑁 − 1,𝑢𝐿− 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑔

𝑇
(𝑢𝑁 − 1, 0)

⎞
⎟⎟⎟⎠ ∈ 𝒞𝑢𝑁×𝑢𝑁 . (4)

Due to the time dispersion of 𝑝1(𝑡) and 𝑝2(𝑡), the discrete-
time channel taps, 𝑔

𝑇
(𝑛, 𝑙), are mutually correlated in both

the time domain, 𝑛, and the delay domain, 𝑙, even though the
underlying fading channel experiences uncorrelated scattering.
Likewise, the noise samples, 𝑧

𝑇
(𝑛), are correlated with their

correlation coefficients determined by the receive filter, 𝑝2(𝑡).
Since the noise elements are mutually correlated, the noise

covariance matrix, R𝑧
𝑇

, might be rank deficient. Define the
pseudo-inverse of R𝑧

𝑇
as

R†
𝑧
𝑇
=

1

𝑁0
V𝑝Ω

−1
𝑝 V𝐻

𝑝 , (7)

with

V𝑝 =
[
v𝑝1,v𝑝2, ⋅ ⋅ ⋅ ,v𝑝𝑢𝑝

] ∈ 𝒞𝑢𝑁×𝑢𝑝 , (8a)

Ω𝑝 = diag
[
𝜔𝑝1, 𝜔𝑝2, ⋅ ⋅ ⋅ , 𝜔𝑝𝑢𝑝

] ∈ 𝒞𝑢𝑝×𝑢𝑝 (8b)

where 𝑢𝑝 is the number of non-zero eigenvalues of R𝑝, Ω𝑝

is a diagonal matrix, with the diagonal elements, {𝜔𝑝𝑖}𝑢𝑝

𝑖=1,
being the non-zero eigenvalues of R𝑝, and {v𝑝𝑖}𝑢𝑝

𝑖=1 are the
corresponding orthonormal eigenvectors.

With the pseudo-inverse matrix defined in (7), the optimum
maximum likelihood (ML) receiver of the OOFDM system is

ŝ=argmin
s∈𝒮𝑁

(
y

𝑇
−G

𝑇
F𝐻

𝑁
s
)𝐻

V𝑝Ω
−1
𝑝 V𝐻

𝑝

(
y

𝑇
−G

𝑇
F𝐻

𝑁
s
)
, (9)

where 𝒮𝑁 is the set containing all the possible vectors of s
with cardinality 𝑀𝑁 , with 𝑀 being the modulation level and
𝑁 the number of symbols per block. The optimum receiver
in (9) performs exhaustive search in the signal space, and it
can fully collect the multipath diversity and Doppler diversity
inherent in the channel matrix, G

𝑇
, which completely char-

acterizes the OOFDM system.

III. DOPPLER-FREQUENCY DOMAIN LINEAR RECEIVER

In this section, a linear receiver is presented to convert the
original OFDM system with 𝑁 subcarriers into an equivalent
system with 𝑢𝑁 subcarriers. In addition, the linear receiver
enables separate control over the Doppler domain and the
frequency domain.

Due to the higher sampling rate at the receiver, there are
𝑢𝑁 time domain samples after the removal of the cyclic prefix.
Performing the 𝑢𝑁 -point DFT over the time domain sample
vector y𝑇 in (3), we have

y𝐹 = G𝐹 s+ z𝐹 , (10)

where y
𝐹

= F
𝑢𝑁

y
𝑇

= [𝑦
𝐹
(0), ⋅ ⋅ ⋅ , 𝑦

𝐹
(𝑢𝑁 − 1)]𝑇 and

z
𝐹
= F

𝑢𝑁
z

𝑇
= [𝑧

𝐹
(0), ⋅ ⋅ ⋅ , 𝑧

𝐹
(𝑢𝑁 − 1)]𝑇 are the frequency

domain sample vector and noise vector, respectively, and
G

𝐹
= F

𝑢𝑁
G

𝑇
F𝐻

𝑁
∈ 𝒞𝑢𝑁×𝑁 .

Proposition 1: Partition the matrix G
𝐹

into a stack of 𝑢

sub-matrices as G
𝐹

=
[
H𝑇

0 , ⋅ ⋅ ⋅ ,H𝑇
𝑢−1

]𝑇
, where H𝑚 ∈

𝒞𝑁×𝑁 . The (𝑖, 𝑘)-th element of H𝑚 is the discrete Doppler-
frequency transfer function, 𝑔

𝐷𝐹

(
𝑖−𝑘
𝑢𝑁 , 𝑚𝑁+𝑘−1

𝑢𝑁

)
, defined as

𝑔
𝐷𝐹

(𝑑, 𝑓) =
1√
𝑢𝑁

𝑢−1∑
𝑣=0

𝑁−1∑
𝑛=0

𝐿−1∑
𝑙=0

𝑔
𝑇
(𝑢𝑛+ 𝑣, 𝑢𝑙+ 𝑣)×

𝑒−𝑗2𝜋(𝑢𝑙+𝑣)𝑑𝑒−𝑗2𝜋(𝑢𝑛+𝑣)𝑓 (11)

Proof: The (𝑖, 𝑘)-th element of H𝑚 is the (𝑚𝑁+𝑖, 𝑘)-th
element of G

𝐹
. Based on the definition of G

𝑇
and G

𝐹
, the

(𝑖, 𝑘)-th element of H
𝑚

can be calculated by

(H𝑚 )𝑖,𝑘=
1√
𝑢𝑁

𝑢𝑁−1∑

𝑞=0

𝑒−𝑗2𝜋
(𝑚𝑁+𝑖−1)𝑞

𝑢𝑁

𝐿−1∑

𝑙=0

𝑔𝑇 (𝑞, 𝑞 + 𝑢𝑙)𝑒−𝑗2𝜋
(𝑘−1)𝑙

𝑁 .

Let 𝑞 = 𝑢𝑛+ 𝑣 for 𝑛 = 0, ⋅ ⋅ ⋅ ,𝑁 − 1 and 𝑣 = 0, ⋅ ⋅ ⋅ ,𝑢− 1,

(H𝑚)𝑖,𝑘 =
1√
𝑢𝑁

𝑁−1∑
𝑛=0

𝑢−1∑
𝑣=0

𝑒−𝑗2𝜋
(𝑚𝑁+𝑖−1)(𝑢𝑛+𝑣)

𝑢𝑁

𝐿−1∑
𝑙1=0

𝑔
𝑇
(𝑢𝑛+ 𝑣, 𝑢𝑙1 + 𝑣)𝑒−𝑗2𝜋

(𝑘−1)(𝑙1−𝑛)

𝑁 . (12)

where 𝑙1 = 𝑙+𝑛. Eqn. (11) can then be obtained by combining
(12) with the identity 𝑒−𝑗2𝜋

(𝑘−1)𝑙
𝑁 = 𝑒−𝑗2𝜋

(𝑚𝑁+𝑘−1)𝑙
𝑁 .

The Doppler-frequency transfer function, 𝑔𝐷𝐹 (𝑑, 𝑓), is ob-
tained from the double discrete-time Fourier transform of the
time varying discrete-time CIR, 𝑔

𝑇
(𝑛, 𝑙). In 𝑔

𝐷𝐹
(𝑑, 𝑓), the

variable 𝑑 is the index of Doppler spread due to fading time
variation, and 𝑓 represents frequency response from fading
dispersion. We denote 𝑑 as the Doppler domain, and 𝑓 as the
frequency domain. It should be noted that the conventional
OFDM system does not distinguish the Doppler domain from
the frequency domain. However, these two domains have
completely different properties due to their different causes.

The result in Proposition 1 leads to an equivalent Doppler-
frequency system representation with channel coefficients,
𝑔𝐷𝐹

(
𝑖
𝑢𝑁 , 𝑘

𝑢𝑁

)
, for 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑢𝑁−1, and 𝑘 = 0, ⋅ ⋅ ⋅ , 𝑢𝑁−1.

In the new system, the space between two adjacent indices
in both the Doppler and the frequency domain is 1

𝑢𝑁𝑇2
=

1
𝑁𝑇1

= 1
𝑇0

, which is the same as conventional OFDM systems.
However, the supports in the two domain are expanded to
[0, 𝑢𝑁𝑇0

]. With 𝑢𝑁 indices in the frequency domain support,
there are totally 𝑢𝑁 subcarriers in the equivalent system,
with the (𝑘+1)-th diagonal element of H𝑚, 𝑔

𝐷𝐹
(0, 𝑚𝑁+𝑘

𝑢𝑁 ),
being the coefficient of the (𝑚𝑁 + 𝑘)-th subcarrier. Thus
the receiver oversampling in the time domain converts the
original 𝑁 -subcarrier system into an equivalent system with
𝑢𝑁 subcarriers. From (10), each modulated data symbol, 𝑠(𝑘),
is equivalently transmitted over 𝑢 subcarriers with channel
coefficients

{
𝑔𝐷𝐹 (0,

𝑚𝑁+𝑘
𝑢𝑁 )

}𝑢−1

𝑚=0
. Thus multipath diversity is

achieved in the proposed OOFDM system due to the expansion
of the frequency domain support.
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The non-diagonal elements of H𝑚 are due to the Doppler
spread of the time varying channel. They introduce both
ICI and Doppler diversity. Specifically, the (𝑖, 𝑘)-th element
of H𝑚, 𝑔

𝐷𝐹

(
𝑖−𝑘
𝑢𝑁 , 𝑚𝑁+𝑘−1

𝑢𝑁

)
, is determined by the Doppler

spread at 𝑖−𝑘𝑇0
. On the (𝑚𝑁+𝑘)-th subcarrier, the data symbol,

𝑠(𝑘), is transmitted over 𝑁 different Doppler spreads, as
represented by

{
𝑔
𝐷𝐹

(
𝑖−𝑘
𝑢𝑁 , 𝑚𝑁+𝑘

𝑢𝑁

)}𝑁−1

𝑖=0
. As a result, Doppler

diversity can be achieved via coherent combining of signal
components and non-coherent combining of the interference
and noise components.

From the analysis above, each data symbol, 𝑠(𝑘), is trans-
mitted over a 2D Doppler-frequency grid formulated by 𝑢×𝑁
channel coefficients, 𝑔

𝐷𝐹

(
𝑖−𝑘
𝑢𝑁 , 𝑚𝑁+𝑘

𝑢𝑁

)
, for 𝑚 = 0, 1, ⋅ ⋅ ⋅ , 𝑢−

1 and 𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑁−1. Therefore, both multipath diversity
and Doppler diversity are achieved simultaneously in the
OOFDM system by means of spreading data over the 2D
Doppler-frequency grid.

In the next two sections, two diversity receivers are pre-
sented for quasi-static frequency selective fading and doubly
selective fading channels, respectively.

IV. OPTIMUM COMBINING FOR OOFDM IN

QUASI-STATIC FADING CHANNELS

An optimum OOFDM diversity receiver is presented in
this section to collect the multipath diversity in a quasi-static
frequency selective fading channel.

For the special case of quasi-static fading, 𝑔
𝑇
(𝑛, 𝑙) degrades

to 𝑔
𝑇
(𝑙). Correspondingly, the frequency response matrix,

H𝑚, degrades to a diagonal matrix with the properties speci-
fied in the following corollary.

Corollary 1: For a quasi-static frequency selective fading
channel, the matrix, H𝑚, is a diagonal matrix, with the
diagonal elements obtained from the 𝑢𝑁 -point DFT of the
discrete-time CIR, up to a scaling factor. The 𝑘-th diagonal
element of H𝑚 can be written as

ℎ𝑚(𝑘) ≜ (H𝑚)𝑘,𝑘 =
1√
𝑢

𝑢𝐿−1∑
𝑙=0

𝑔
𝑇
(𝑙)𝑒−𝑗2𝜋

(𝑚𝑁+𝑘−1)𝑙
𝑢𝑁 , (13)

where 𝑔
𝑇
(𝑙), for 𝑙 = 0, ⋅ ⋅ ⋅ , 𝑢𝐿 − 1, is the time-invariant

discrete-time CIR of the frequency selective fading.
Proof: From (12), the (𝑖, 𝑘)-th element of H𝑚 in a quasi-

static channel can be calculated by

(H𝑚)𝑖,𝑘 =
1√
𝑢𝑁

𝑢−1∑
𝑣=0

𝐿−1∑
𝑙1=0

𝑁−1∑
𝑛=0

𝑔𝑇 (𝑢𝑙1 + 𝑣)×

𝑒−𝑗2𝜋
(𝑚𝑁+𝑘−1)(𝑢𝑙1+𝑣)

𝑢𝑁 𝑒−𝑗2𝜋
(𝑖−𝑘)(𝑢𝑛+𝑣)

𝑢𝑁 . (14)

When 𝑖 = 𝑘, it can be easily shown that (H𝑚)𝑘,𝑘 =
1√
𝑢

∑𝑢−1
𝑣=0

∑𝐿−1
𝑙1=0 𝑔𝑇

(𝑢𝑙1 + 𝑣)𝑒−𝑗2𝜋
(𝑚𝑁+𝑘−1)(𝑢𝑙1+𝑣)

𝑢𝑁 ,
which is equivalent to (13) by letting 𝑙 = 𝑢𝑙1 + 𝑣.
When 𝑖 ∕= 𝑘, (14) can be written as (H𝑚)𝑖,𝑘 =

1√
𝑢𝑁

𝑎𝑖,𝑘
∑𝑁−1

𝑛=0 𝑒−𝑗2𝜋
(𝑖−𝑘)𝑛

𝑁 = 0, where 𝑎𝑖,𝑘 =∑𝑢−1
𝑣=0

∑𝐿−1
𝑙1=0 𝑔𝑇

(𝑢𝑙1+𝑣)𝑒
−𝑗2𝜋 (𝑚𝑁+𝑘−1)(𝑢𝑙1+𝑣)

𝑢𝑁 𝑒−𝑗2𝜋
(𝑖−𝑘)𝑣

𝑢𝑁 .

A. Optimum Combining

For the quasi-static fading channel model, the diagonal
elements of H𝑚 is directly obtained from the 𝑢𝑁 -point DFT
of the discrete-time CIR, and this leads to a total of 𝑢𝑁 sub-
carriers with ℎ𝑚(𝑘) being the coefficient of the (𝑚𝑁 + 𝑘)-th
subcarrier. Therefore, each data symbol of the OOFDM system
is equivalently transmitted over 𝑢 subcarriers experiencing no
ICI. Stacking all the 𝑢 subcarriers related to the symbol 𝑠(𝑘)
leads to an alternative single input multiple output (SIMO)
system model

r(𝑘) = h(𝑘) ⋅ 𝑠(𝑘) +w(𝑘), for 𝑘 = 0, ⋅ ⋅ ⋅ , 𝑁 − 1, (15)

where r(𝑘) = [𝑟0(𝑘), 𝑟1(𝑘), ⋅ ⋅ ⋅ , 𝑟𝑢−1(𝑘)]
𝑇 with 𝑟𝑚(𝑘) =

𝑦
𝐹
(𝑚𝑁 + 𝑘), h(𝑘) = [ℎ0(𝑘), ℎ1(𝑘), ⋅ ⋅ ⋅ , ℎ𝑢−1(𝑘)]

𝑇 , and
w(𝑘) = [𝑤0(𝑘), 𝑤1(𝑘), ⋅ ⋅ ⋅ , 𝑤𝑢−1(𝑘)]

𝑇 with 𝑤𝑚(𝑘) =
𝑧
𝐹
(𝑚𝑁 + 𝑘).
Corollary 2: For an OOFDM system in quasi-static fre-

quency selective Rayleigh fading and AWGN, the frequency
domain vectors, h(𝑘) and w(𝑘), are zero mean complex
Gaussian distributed with their respective covariance matrices,
R

(𝑘)
ℎ = 𝔼[h(𝑘)h𝐻(𝑘)], and R

(𝑘)
𝑤 = 𝔼[w(𝑘)w𝐻(𝑘)], given by

R
(𝑘)
ℎ = 𝑁 ⋅ F

𝑢𝑁
(𝑘) ⋅R𝑔

𝑇
⋅F𝐻

𝑢𝑁
(𝑘), (16a)

R(𝑘)
𝑤 = 𝑁0 ⋅F𝑢𝑁

(𝑘) ⋅R𝑝 ⋅F𝐻𝑢𝑁
(𝑘). (16b)

where R𝑝 ∈ 𝒞𝑢𝑁×𝑢𝑁 is defined in Lemma 2, and F
𝑢𝑁

(𝑘) ∈
𝒞𝑢×𝑢𝑁 is obtained by extracting a subset of 𝑢 rows from the
normalized 𝑢𝑁 -point DFT matrix, with the (𝑚,𝑛)-th element
of F𝑢𝑁 (𝑘) being 1√

𝑢𝑁
𝑒−𝑗2𝜋

[(𝑚−1)𝑁+𝑘](𝑛−1)
𝑢𝑁 . The time domain

channel covariance matrix R𝑔
𝑇
∈ 𝒞𝑢𝑁×𝑢𝑁 is defined with its

(𝑚,𝑛)-th element being
(
R𝑔

𝑇

)
𝑚,𝑛

= 𝜌(𝑚 − 1, 𝑛 − 1), for

1 ≤ 𝑚,𝑛 ≤ 𝑢𝐿 and 0 otherwise.
Proof: From (13) and the definition of z

𝐹
, we have

h(𝑘) =
√
𝑁 ⋅ F

𝑢𝑁
(𝑘) ⋅ g

𝑇
, and w(𝑘) = F

𝑢𝑁
(𝑘) ⋅ z

𝑇
, where

g
𝑇

= [𝑔
𝑇
(0), ⋅ ⋅ ⋅ , 𝑔

𝑇
(𝑢𝐿 − 1), 0, ⋅ ⋅ ⋅ , 0]𝑇 ∈ 𝒞𝑢𝑁×1 is the

time domain discrete-time CIR vector. Combining the above
equations with Lemmas 1 and 2 leads to (16).

The results in (16) indicate that the SIMO system of (15)
has correlated channel taps and is corrupted by a colored noise.
The covariance matrix, R(𝑘)

𝑤 , of the colored noise might be
rank deficient. To facilitate the analysis, define the pseudo-
inverse of 1

𝑁0
R

(𝑘)
𝑤 as

Φ𝑘 = V𝑘Ω
−1
𝑘 V𝐻

𝑘 ∈ 𝒞𝑢×𝑢, (17)

with V𝑘 = [v𝑘1,v𝑘2, ⋅ ⋅ ⋅ ,v𝑘𝑢𝑤 ] ∈ 𝒞𝑢𝑁×𝑢𝑤 , and Ω𝑘 =
diag [𝜔𝑘1, 𝜔𝑘2, ⋅ ⋅ ⋅ , 𝜔𝑘𝑢𝑤 ] ∈ 𝒞𝑢𝑤×𝑢𝑤 being the reduced eigen-
vector matrix and eigenvalue matrix of 1

𝑁0
R

(𝑘)
𝑤 , respectively,

and 𝑢𝑤 is the rank of R
(𝑘)
𝑤 . With the pseudo-inverse matrix

defined in (17), the optimum diversity receiver for the equiv-
alent SIMO system is described by the following proposition.

Proposition 2: The optimum decision rule for the SIMO
system described in (15) is

𝑠(𝑘) = argmax
𝑠(𝑘)∈𝒮

∣𝜑𝑘 − 𝑞𝑘𝑠(𝑘)∣2 (18)

where 𝑞𝑘 = h𝐻(𝑘)Φ𝑘h(𝑘), and 𝜑𝑘 = h𝐻(𝑘)Φ𝑘r(𝑘).
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Proof: Define the noise whitening matrix as D𝑘 =

Ω
− 1

2

𝑘 V𝐻
𝑘 . Applying D𝑘 to both sides of (15) leads to

r̄(𝑘) = h̄(𝑘) ⋅ 𝑠(𝑘) + w̄(𝑘), (19)

where r̄(𝑘) = D𝑘r(𝑘), h̄(𝑘) = D𝑘h(𝑘), and w̄(𝑘) =

D𝑘w(𝑘) with the covariance matrix of w̄(𝑘) being R
(𝑘)
�̄� =

𝑁0I𝑢𝑤 . Applying maximal ratio combining (MRC) to (19),
i.e., 𝜑𝑘 = h̄𝐻(𝑘)r̄(𝑘), leads to the optimum decision rule in
(18).

B. Performance Analysis

The exact symbol error rate (SER) of the OOFDM system
with the optimum diversity receiver described in Proposition
2 is derived in this subsection.

Combining (15) and Proposition 2 yields an alternative
representation of the decision variable as 𝜑𝑘 = 𝑞𝑘 ⋅ 𝑠(𝑘) +
h𝐻(𝑘)Φ𝑘w(𝑘). Thus, the SNR at the output of the optimum
receiver is

𝛾𝑘 =
∣𝑞𝑘∣2𝐸𝑠

h𝐻(𝑘)Φ𝑘R
(𝑘)
𝑤 Φ𝐻

𝑘 h(𝑘)
= 𝑞𝑘𝛾0, (20)

where 𝛾0 = 𝐸𝑠/𝑁0 is the SNR without fading, with 𝐸𝑠 being
the energy of one symbol. Based on the SNR 𝛾𝑘, the SER
of the 𝑘-th data stream for linear modulation schemes, such
as M-ary amplitude shift keying (MASK), M-ary phase shift
keying (MPSK), and M-ary quadrature amplitude modulation
(MQAM), can be written in a unified expression as [15]

𝑃 (𝐸𝑘) =

2∑
𝑖=1

𝛽𝑖
𝜋

∫ 𝜓𝑖

0

�̃�𝑘∏
𝑖=1

(
1 + 𝜁𝛾0 ⋅ 𝜆𝑖

sin2 𝜃

)−1

𝑑𝜃, (21)

where �̃�𝑘 is the rank of the product matrix, R(𝑘)
ℎ Φ𝑘, with 𝜆𝑖

being the corresponding non-zero eigenvalues, and the values
of 𝜁, 𝛽𝑖, and 𝜓𝑖 for the various modulation schemes can be
found in [15, Table 1]. With 𝑃 (𝐸𝑘) given in (21), the exact
SER for the OOFDM system in quasi-static fading channels
can then be calculated as 𝑃 (𝐸) = 1

𝑁

∑𝑁−1
𝑘=0 𝑃 (𝐸𝑘).

It’s apparent from (21) that the multipath diversity order
of the OOFDM is equal to the rank of the product matrix,
R

(𝑘)
ℎ Φ𝑘, which is in turn determined by the time domain

covariance matrices, R𝑔
𝑇

and R𝑝.

V. DOPPLER DOMAIN EQUALIZATION FOR OOFDM IN

DOUBLY SELECTIVE FADING

A Doppler domain equalizer is presented in this section to
simultaneously collect the Doppler diversity and mitigate the
ICI impairments caused by the fading time variation.

A. Doppler Domain Equalization

In a doubly selective fading channel, each data symbol,
𝑠(𝑘), is transmitted over a 𝑢 × 𝑁 Doppler-frequency grid
defined by 𝑔

𝐷𝐹

(
𝑖−𝑘
𝑢𝑁 , 𝑚𝑁+𝑘

𝑢𝑁

)
, for 𝑚 = 0, ⋅ ⋅ ⋅ , 𝑢 − 1 and

𝑖 = 0, ⋅ ⋅ ⋅ , 𝑁 − 1, as shown in (10) and Proposition 1. The
Doppler-frequency system representation in (10) is an equiv-
alent multiple-input multiple-output (MIMO) system with 𝑁
inputs, s, and 𝑢𝑁 outputs, y

𝐹
. Due to the correlation among

noise samples in the time domain, the elements of the fre-
quency domain noise vector, z

𝐹
, are also correlated. Based

on Lemma 2, the covariance matrix of z𝐹 is

R𝑧
𝐹
= 𝑁0 ⋅ F𝑢𝑁

R𝑝F
𝐻
𝑢𝑁

. (22)

Since the noise elements are mutually correlated, the noise
covariance matrix, R𝑤, might be rank deficient. Define the
pseudo-inverse of 1

𝑁0
R𝑤 as

Φ = F
𝑢𝑁

V𝑝Ω
−1
𝑝 V𝐻

𝑝 F𝐻
𝑢𝑁

, (23)

where the reduced eigenvector matrix, V𝑝, and the reduced
eigenvalue matrix, Ω𝑝, are defined in (8).

From (23), define noise whitening matrix D =
1√
𝑢
Ω

−1/2
𝑝 V𝐻

𝑝 F𝐻
𝑢𝑁

∈ 𝒞𝑢𝑝×𝑢𝑁 . Multiplying D on both sides
of (10) leads to an equivalent system

r̄ = H̄s+ w̄, (24)

where r̄ = Dy
𝐹

, H̄ = DG
𝐹

, and w̄ = Dz
𝐹

. The covariance
matrix of the noise vector, w̄, in the equivalent system can
be calculated as R�̄� = DR𝑧

𝐹
D𝐻 = 𝑁0I𝑢𝑝 . Therefore, the

original MIMO system in (10) with 𝑢𝑁 outputs and a colored
noise is converted to an equivalent MIMO system with 𝑢𝑝
outputs and a white noise.

Based on (24), the optimum maximum likelihood decision
rule of the system can be described as

ŝ = argmax
s∈𝒮𝑁

(
r̄− H̄s

)𝐻 (
r̄− H̄s

)
. (25)

The optimum solution in (25) can be obtained through
exhaustive search with a complexity on the order of 𝒪 (

𝑀𝑁
)
,

which is often prohibitive for practical systems with large
values of 𝑀 and/or 𝑁 . To simplify the operation, a sub-
optimum Doppler domain block decision feedback equalizer
(DD-BDFE) is developed. The DD-BDFE scheme contains
two filters, a feed forward filter, A ∈ 𝒞𝑁×𝑢𝑝 , and an upper
triangular filter with unit diagonal elements as the feedback
filter, B ∈ 𝒞𝑁×𝑁 . Based on the assumption of correct past
detection, the error vector, e, of the BDFE can be expressed
by e = Ar̄−Bs. Based on the minimum mean square error
(MMSE) criterion, B can be obtained from the Cholesky
decomposition [22]

1

𝐸𝑠
I𝑁 + H̄𝐻ΦH̄ = B𝐻ΛB (26)

with Λ being a diagonal matrix. The feedforward matrix, A,
can then be calculated as

A = BH̄𝐻

[
H̄H̄𝐻 +

1

𝛾0
I𝑢𝑝

]−1

. (27)

Since B is upper triangular, the (𝑚,𝑛)-th element of B,
𝑏𝑚𝑛, satisfies 𝑏𝑚𝑛 = 0, ∀𝑛 < 𝑚. Therefore, the information
symbols are detected in a reverse order, i.e., 𝑠(𝑁 − 1) is
detected first and 𝑠(0) is detected last within one OFDM
symbol. The output of the BDFE equalizer can then be
described as

𝑠(𝑛)=argmin
𝑠(𝑛)∈𝒮

∣∣∣∣∣𝑟(𝑛)−𝑏𝑛,𝑛𝑠(𝑛)−
𝑁−1∑

𝑚=𝑛+1

𝑏𝑛,𝑚𝑠(𝑚)

∣∣∣∣∣
2

, 𝑛=0,⋅ ⋅ ⋅,𝑁−1.

where 𝑟(𝑛) is the 𝑛-th element of r̄.
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B. Performance Analysis

The MIMO system representation in (10) can be alterna-
tively represented as

y
𝐹
= h𝑘𝑠(𝑘) + I𝑘 + z

𝐹
, (28)

where h𝑘 is the 𝑘-th column of G𝐹 , and I𝑘 =
∑

𝑚 ∕=𝑘 h𝑚𝑠(𝑚)
represents the ICI related to the symbol 𝑠(𝑘). The frequency
domain noise vector, z

𝐹
, is a zero mean complex Gaussian

random vector with covariance matrix given in (22).
The presence of ICI makes it difficult, if not impossible,

to obtain the exact error probability of the OOFDM system
in doubly selective fading. Instead, the matched filter bound
originally developed for single carrier system [15] is employed
here to facilitate the performance analysis by neglecting the
ICI component in the equivalent system. The result is a
performance lower bound that defines the best performance
achievable by the proposed system and quantifies the benefits
of Doppler diversity and multipath diversity.

For an OOFDM system operating in a doubly selective
Rayleigh fading channel, the frequency domain channel vector,
h𝑘, is zero-mean complex Gaussian distributed with covari-
ance matrix Rℎ𝑘

= 𝔼
(
h𝑘h

𝐻
𝑘

)
. The channel vector h𝑘 can be

represented as h𝑘 =
[
h𝑇𝑘 (0),h

𝑇
𝑘 (1), ⋅ ⋅ ⋅ ,h𝑇𝑘 (𝑢− 1)

]𝑇
, where

h𝑘(𝑚) ∈ 𝒞𝑁×1 is the 𝑘-th column of H𝑚, and the (𝑛+1)-th
element of h𝑘(𝑚) is 𝑔𝐷𝐹

(
𝑛−𝑘
𝑢𝑁 , 𝑚𝑁+𝑘

𝑢𝑁

)
. Thus the covariance

matrix, Rℎ𝑘
, can be written in the form of a block matrix as

Rℎ𝑘
=

⎡
⎢⎢⎢⎣

Rℎ𝑘
(0, 0) Rℎ𝑘

(0, 1) ⋅ ⋅ ⋅ Rℎ𝑘
(0, 𝑢− 1)

Rℎ𝑘
(1, 0) Rℎ𝑘

(1, 1) ⋅ ⋅ ⋅ Rℎ𝑘
(1, 𝑢− 1)

...
. . .

. . .
...

Rℎ𝑘
(𝑢 − 1, 0) Rℎ𝑘

(𝑢−1, 1) ⋅ ⋅ ⋅ Rℎ𝑘
(𝑢− 1, 𝑢− 1)

⎤
⎥⎥⎥⎦

where Rℎ𝑘
(𝑢1, 𝑢2) = 𝔼

[
h𝑘(𝑢1)h

𝐻
𝑘 (𝑢2)

]
is a size-𝑁 square

matrix with the (𝑚+ 1, 𝑛+ 1)-th element being

(Rℎ𝑘
(𝑢1, 𝑢2))𝑚+1,𝑛+1 = 𝔼

[
𝑔
𝐷𝐹

(
𝑚− 𝑘

𝑢𝑁
,
𝑢1𝑁 + 𝑘

𝑢𝑁

)

𝑔∗
𝐷𝐹

(
𝑛− 𝑘

𝑢𝑁
,
𝑢2𝑁 + 𝑘

𝑢𝑁

)]
. (29)

Combining (29) with Lemma 1, we have

(Rℎ𝑘
(𝑢1, 𝑢2))𝑚+1,𝑛+1 =

1

𝑢𝑁2

𝑢−1∑
𝑣1,𝑣2

𝑁−1∑
𝑞1,𝑞2

𝐿−1∑
𝑙1,𝑙2

𝑐𝑚,𝑛(𝑢𝑞1 + 𝑣1, 𝑢𝑞2 + 𝑣2) 𝑑𝑢1,𝑢2(𝑢𝑙1 + 𝑣1, 𝑢𝑙2 + 𝑣2),(30)

where

𝑐𝑚,𝑛(𝑎, 𝑏)=𝐽0 (2𝜋𝐹𝑑𝑇2(𝑎− 𝑏)) 𝑒−𝑗2𝜋
(𝑚−𝑘)[𝑎−(𝑛−𝑘)𝑏]

𝑢𝑁 ,

𝑑𝑢1,𝑢2(𝑎, 𝑏)=𝜌(𝑎, 𝑏)𝑒−𝑗2𝜋
(𝑢1𝑁+𝑘)𝑎−(𝑢2𝑁+𝑘)𝑏

𝑢𝑁 . (31)

With the covariance matrix Rℎ𝑘
, the lower bound of the

unconditional error probability in doubly selective fading can
be obtained by following the similar procedure as described
in Section IV-B. The SNR of the interference-free equivalent
system is 𝛾𝑘 = 𝜗𝑘𝛾0, where 𝜗𝑘 = h𝐻𝑘 Φh𝑘. The SER lower
bound is [15]

𝑃 (𝐸𝑘) =
1

𝜋

∫ 𝜋
2

0

𝑣𝑘∏
𝑖=1

(
1 + 𝛾0 ⋅ 𝜂𝑖

sin2 𝜃

)−1

𝑑𝜃, (32)
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Fig. 2. SER performance of the proposed OOFDM system in a quasi-static
fading channel. The number of subcarriers was 𝑁 = 64 at the transmitter.
The oversampling factor of the OOFDM was 𝑢 = 2.

where 𝑣𝑘 is the rank of the product matrix Rℎ𝑘
Φ, with 𝜂𝑖

being the corresponding eigenvalues. The best performance
of the OOFDM system in doubly selective fading depends on
the matrices, Rℎ𝑘

and Φ, which are in turn determined by the
maximum Doppler spread, 𝐹𝑑, the power delay profile, 𝐺(𝜏),
and the sampling rate, 𝑢.

VI. SIMULATION RESULTS

During simulation, the fading channels were generated
based on the typical urban (TU) channel power delay profile
[23] with the normalized Doppler frequency 𝐹𝑑𝑇0 being small
for quasi-static channels and large for doubly selective chan-
nels. The sample period at the transmitter was 𝑇1 = 3.69𝜇s.
The square root raised cosine (SRRC) filter with roll-off factor,
𝛼 = 1, was used as both the transmit and receive filters. The
oversampling factor used by the OOFDM system was 𝑢 = 2
unless specified otherwise.

The performances of the OOFDM and the conventional
OFDM systems in quasi-static frequency selective fading were
compared. Both systems employed the QPSK modulation with
the number of subcarriers at the transmitter being 𝑁 = 64.
Considerable performance improvement of the OOFDM sys-
tem over the conventional OFDM system was observed from
both simulation and analytical results, as shown in Fig. 2. At
the SER level of 10−3, the OOFDM system with optimum
receiver outperforms the conventional OFDM system by 7
dB. The performance improvement was mainly contributed
by the introduction of multipath diversity. The performance of
the OOFDM system with a conventional MRC receiver also
outperformed the conventional OFDM thanks to oversampling
at the receiver. The MRC receiver directly performed diversity
combining over the SIMO system of (15) without considering
the correlation among noise samples, and resulted in a perfor-
mance loss of approximately 2 dB compared to the OOFDM
optimum receiver. In all cases of quasi-static fading, good
agreement was observed between the simulation results and
the theoretical SER expression given in (21).

In Fig. 3 we compared the performance of the proposed
OOFDM system with two existing modified OFDM schemes:



WU and ZHENG: OVERSAMPLED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING IN DOUBLY SELECTIVE FADING CHANNELS 821

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

Zero−Padding OFDM (2 bit/s/Hz) [5]

Precoded OFDM (2 bit/s/Hz) [4]

Precoded OFDM (1.5 bit/s/Hz) [4]

OOFDM with u = 2 (2 bit/s/Hz) (proposed)

Fig. 3. Comparison of the proposed OOFDM system with existing precoded
OFDM and zero-padding OFDM schemes. The number of subcarriers at the
transmitter was 𝑁 = 64 for the OOFDM and ZP-OFDM systems, and 𝑁 =
128 for the Precoded OFDM with a code rate of 1/2.

the precoded OFDM [2], and the zero-padding OFDM (ZP-
OFDM) [3]. The schemes in [2] and [3] achieve multipath
diversity in OFDM systems through, respectively, precoding
at the transmitter [2], or zero-padding at the receiver [3]. The
precoding or zero-padding can lead to an equivalent system
that is similar to that achieved through oversampling. The
precoded OFDM results in Fig. 3 were obtained with a code
rate of 1/2, corresponding to a spectral efficiency of 2 bit/s/Hz
for a 16QAM modulated system, and 1.5 bit/s/Hz for an
8PSK modulated system. QPSK modulation were employed
for uncoded OOFDM and ZP-OFDM systems to achieve a
spectral efficiency of 2 bit/s/Hz. The number of subcarriers
at the transmitter was 64 for OOFDM and ZP-OFDM, and
128 for precoded OFDM to account for the 1/2 code rate.
The ZP-OFDM is padded to 256 subcarriers at the receiver,
and both the OOFDM and the precoded OFDM had 128
subcarriers at the receiver. Results in Fig. 3 indicated that
the proposed OOFDM system consistently outperformed both
existing methods with the same or even smaller spectral
efficiency. In addition, the existing methods in [2] and [3] can
only operate in quasi-static fading, yet the proposed OOFDM
scheme can operate in doubly selective fading.

The performances of the OOFDM system and the OFDM
system were compared for doubly selective fading in Figs.
4 and 5. The first example used 𝑁 = 16. The normalized
Doppler spread was 𝐹𝑑𝑇0 = 0.05. The DD-BDFE was used
in both the OOFDM system and the conventional OFDM
system for ICI suppression. The proposed OOFDM system
consistently outperformed the conventional OFDM system for
both BPSK and 16QAM, as shown in Fig. 4. The analytical
lower bound derived for the OOFDM system in doubly selec-
tive fading provided a reasonable prediction of the SER with
small differences between the lower bound and simulation
results. The impact of the normalized Doppler spread 𝐹𝑑𝑇0

on system performance was evaluated in Fig. 5. At low SNR,
both the conventional OFDM system and the OOFDM system
benefit from larger values of 𝐹𝑑𝑇0 due to the larger Doppler
diversity. However, at large SNR and high Doppler frequency
(𝐹𝑑𝑇0 = 0.5), an error floor occurred in the conventional
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Fig. 4. SER performance of the OOFDM system in a doubly selective fading
channel. The normalized Doppler spread was 𝐹𝑑𝑇0 = 0.05. The conventional
OFDM system is denoted as 𝑢 = 1.
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Fig. 5. Impacts of Doppler spread on system performance in quasi-
static (𝐹𝑑𝑇0 = 0) and doubly selective (𝐹𝑑𝑇0 = 0.1, 0.5) channels. The
modulation scheme was QPSK.

OFDM system because the negative effects of ICI dominated
over the benefit contributed by Doppler diversity. On the
other hand, the OOFDM system was able to harvest the
Doppler diversity and suppress the ICI simultaneously leading
to consistent performance with the increase of 𝐹𝑑𝑇0. At the
SER level of 10−3, the OOFDM system outperformed the
OFDM by 7 dB, 6 dB, and 5 dB, for 𝐹𝑑𝑇0 = 0, 0.1, and 0.5,
respectively.

VII. CONCLUSIONS

A new oversampled OFDM system operating in doubly
selective fading has been presented in this paper. The over-
sampling at the receiver leads to an equivalent channel model
that enables a two dimensional Doppler-frequency grid. The
OOFDM system achieves both Doppler diversity and multi-
path diversity by simultaneously performing coherent combin-
ing of data samples and non-coherent combining of ICI over
the Doppler-frequency grid, while retaining the same spectral
efficiency and similar complexity as the conventional OFDM
system. Optimum and sub-optimum receivers have been devel-
oped and their respective theoretical error probabilities have
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been derived. Both theoretical analysis and computer simula-
tions showed that considerable performance improvements of
as much as 7 dB can be achieved by the OOFDM system over
the conventional OFDM or other existing modified OFDM
systems under a wide range of system configurations. More
interestingly, simulation study showed that the conventional
OFDM system exhibits an error floor at high Doppler spread
in the high SNR region due to the dominance of ICI, while the
proposed OOFDM system can improve the SER performance
consistently with the increase of the Doppler spread thanks to
its inherent ICI suppression ability. An oversampling factor
of two is sufficient to collect most of the benefits of the
OOFDM system while keeping the complexity similar to the
conventional OFDM system.
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