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Abstract—Wireless sensor networks (WSNs) developed for
the monitoring of critical military or civilian infrastructures
are expected to have long life cycle with ultra-low power
consumption. An ultra-low power wireless sensing scheme is
developed by exploiting the unique features of infrastructure
monitoring systems, which usually have long latency tolerance,
low data rate, and strong correlation among data collected by
spatially distributed sensors. The wireless sensor nodes asyn-
chronously transmit measured data through a new exponential-
interval media access control (EI-MAC) scheme, which can
asymptotically almost surely (a.a.s.) achieve collision-free
communication by leveraging on the long latency tolerance
and low data rate of the system. Two low power sensing
schemes, namely, compressive detection (CD) and compressive
transmission (CT), are proposed in recognition of the strong
correlation among data samples collected by n spatially
distributed sensing nodes. Both the two schemes are fully
scalable; have ultra-low power consumption; have less distor-
tion compared to conventional schemes; and allow the sens-
ing nodes to operate asynchronously without central control.
Theoretical analysis shows that the normalized mean square
distortion of the recovered information scales as (9('3‘;%).

I. INTRODUCTION

Wireless sensor networks (WSNs) developed for the
monitoring of critical military or civilian infrastructures
are endowed with many unique features that are not
available in conventional wireless networks. Many of
the infrastructures, such as bridges, tunnels, and build-
ings, have extremely long life cycle in the order of
years or decades, with very slow changing rates. As
a result, infrastructure monitoring systems have long
latency tolerance with ultra-low data rate. In addition,
data collected in real world often contain redundancies
due to the spatial correlation inherent in the monitored
object(s). The redundancy/correlation can be used to
facilitate the design of infrastructure monitoring systems.

In this paper, we propose to design ultra-low power,
high fidelity wireless sensing schemes by exploiting the
unique features of infrastructure monitoring systems.

Two wireless sensing schemes, namely, compressive
transmission (CT), and compressive detection (CD), are
proposed in this paper. In CT, data collected by n sensing
nodes are first transmitted asynchronously to one or more
compressing nodes, where the redundancy in the data is
partly removed by projecting the n-dimension data onto
a subspace (transform domain) with dimension k£ < n.
The k transform domain coefficients are then delivered to
a fusion center (FC) to recover the original information.
In CD, data from n sensing nodes are directly delivered
to a FC, where the information is reconstructed by pro-
jecting the received signal onto a k-dimension subspace.
It’s demonstrated through asymptotic analysis that, for
both of the two schemes, if the total transmission power
is fixed, and if the inter-sensor distance is much smaller
compared to the sensor-FC distance, the optimum value
of the transform domain dimension, k, scales with log n,
and the normalized mean square distortion (NMSD) of
the recovered information scales with lo%

The proper operation of the CT and CD schemes
requires an effective media access control (MAC) pro-
tocol to coordinate the transmission of the spatially
distributed sensing nodes. In recognition of the long
latency tolerance and low data rate of infrastructure mon-
itoring systems, a new exponential-interval MAC (EI-
MAC) scheme is proposed. The EI-MAC scheme results
in an extremely low duty cycle for the sensing nodes,
and can asymptotically almost surely (a.a.s.) achieve a
collision-free communication. The combination of EI-
MAC and CT/CD schemes forms an efficient cross-
layer infrastructure monitoring system, which is fully
scalable, has ultra-low power consumption with high
fidelity, and allows spatially distributed sensing nodes
to operate asynchronously without central control.

A. Related Works

There are limited works in the literature on the de-
velopment of ultra-low power wireless communications.
In [1], an ultra-low power MAC protocol is proposed
by employing a periodic preamble sampling scheme to
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reduce the idle listening time of the sensor nodes. The
performance of the MAC protocol of IEEE 802.15.4 [2],
a standard for low power/low rate personal area networks
(PAN), is investigated in [3]. The above MAC protocols
are designed for real time communications with data
rates in the order of hundreds of kilo-bits per second,
which are much higher than the targeted data rate for
infrastructure monitoring system. In [4] — [5], various
hardware structures and low power integrated circuits
(IC) are proposed for low power communications. The
hardware structures are designed from the perspectives
of reducing current leakage, more efficient low noise am-
plifier (LNA), etc. They do not directly take advantage of
the unique features of infrastructure monitoring systems.
The newly proposed CT and CD schemes are moti-
vated in part by the recent results on compressive sensing
[6], which demonstrate that a small number of random
projections of a sparse signal can retain most its salient
information. A compressive wireless sensing scheme is
proposed in [7], where each sensor transmits a scaled
version of its measured data, and the superposition of
all the data samples forms a projection onto a transform
domain at the FC. The scheme in [7] requires perfect
node synchronization, which is extremely difficult to
achieve in a spatially distributed network.
B. Notations

The following notations are used in this paper. al

denotes the transpose of a column vector a. The [,-
norm of an n-dimension vector a is defined as ||a||;, =
>y |ai|m)1/ ™. E(-) denotes mathematical expecta-
tion. a, = O(by,) if and only if there exists 0 < M < oo
and ng > 0 such that |a,| < M|b,| for all n > nyg.
an = O(by) is also denoted as ay, < by. a, ~ by, if and

only if both a, < b, and b, =< ay.

II. SYSTEM MODEL

Consider a wireless sensor network with n sensing
nodes uniformly distributed over an area V. The data
collected by the i-th node can be modeled as

for i=1,---,n,

)

where s; is the desired data related to the location of
the i-th node, and the measurement noise, {w;}7_;, are
independently and identically distributed (i.i.d.) random
variables (RVs) with zero mean and variance o2. The
average power of one data sample is normalized to unity,
ie, tE||s||2 =1, where s = [s1, 59, ,5n]T € R"*!
is the data vector.

Data in real world often contain redundancies. There-

fore, it’s reasonable to assume that the data collected

T = 8; + w;,

by the nodes in a dense wireless network are correlated,
and thus are compressible. The data vector is defined
as compressible if it can be approximated by a linear
combination of k¥ < n orthonormal vectors. Define the
k-approximation of s as

k
=Y b
i=1

where ¢, € R, for i = 1,--- ,n, is an orthonormal
basis of R", and 6; = s” ¢, is the projection of s onto
¢;. Without loss of generality, {¢;};_; is labeled in a
way such that |01]| > 62| > --- > |0,

Definition 1: The data vector s is defined as (-
compressible if its k-approximation satisfies

afle-stit] o), o

where the scaling parameters, £ and (3, depend on node
density and the nature of the measured data. ]

The measured data will be directly or indirectly trans-
mitted to a FC, where the data will be recovered. Based
on a distorted observation of the measured data, the FC
obtains an estimate § of s by minimizing the NMSD,
D =1E[ls- s3]

Communication can occur among sensing nodes, or
between sensing nodes and a FC. The communication
process is assumed to be completely asynchronous, i.e.,
there is no coordination among nodes regarding the
starting time of a transmission. In this case, signals
transmitted by two or more nodes might overlap at the
receiver, and this leads to collision. Collisions result
in data loss and waste of precious transmission power.
A simple EI-MAC protocol is proposed to reduce the
probability of collision, thus the power consumption.

Definition 2: EI-MAC protocol. Each node transmits
at random, with the interval between two consecutive
transmission attempts following an independent expo-
nential distribution with mean % The message has a
fixed length of 7. The average duty cycle of a node,
Ar, satisfies AT ~ —L—, with n being the number of
nodes. The transmission schedules of different nodes are
independent. In case of a collision, the message will be
discarded and no retransmission will be attempted. W

One important power saving feature of EI-MAC is that
no retransmission will be attempted in case of collision.
Since the monitored object changes very slowly, there
is a strong time domain correlation among packets
transmitted by the same sensor. In case a packet from
a sensor is lost, the FC can obtain a reasonable estimate
of the lost packet through the packets from the same

@
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sensor but received in previous rounds. Thus the loss of
a very small percentage of packets won’t significantly
affect the integrity of the reconstructed information. In
addition, the following Lemma shows that EI-MAC can
actually a.a.s. achieve collision-free communication.
Lemma 1: For the EI-MAC protocol with parameters
A and 7 as defined above, the probability of collision
tends to 0 as n — oo.
Proof: When n is large, the duration of a message,
@%, is negligible compared to the average
transmission interval, % With an exponential interval
between two consecutive transmissions, the transmission
schedule for any given node can be modeled as a Poisson
process with arrival rate A [8]. Since the transmission
schedules of different nodes are independent, the com-
bined transmission schedule of all the n nodes is a
Poisson process with arrival rate nA. As a result, the
interval between any consecutive transmissions from all
nodes follows an independent exponential distribution
with mean % The probability of no collision is equiva-
lent to the probability that the interval between any two
consecutive transmissions is larger than 7, and it can be
calculated as

P, = /oo fn(z)dz = e T ()

where fn(z) = nXe ™% is the probability density
function (pdf) of the transmission interval for a system
with n nodes. With A\t ~ ngn, it can be easily
shown that the asymptotic probability of no collision is,
P.=1-1lim, - P, =0. [ |

The result in Lemma 1 indicates that the communica-
tions in the wireless sensor network can be carried out
asynchronously with a collision probability arbitrarily
small, thanks to the small duty cycle made possible
by the long delay tolerance and low data rate of the
infrastructure monitoring system.

T ~

ITI. ASYNCHRONOUS COMPRESSIVE WIRELESS
SENSING

Two compressive wireless sensing schemes, com-
pressive detection and compressive transmission, are
proposed in this section to achieve ultra-low power
high fidelity wireless sensing. To facilitate the analysis,
define the radius of the monitored area, V, as p =
infy, ey supycy ||V — vollz,- The value of vo € V that
leads to the infimum of sup,¢y, ||v — vo|;, is defined as
the center of V. Denote the distance between the center
of V and the FC as [. It’s assumed that [ > p, such
that all the sensing nodes have approximately the same
distance, [, to the FC.

A. Direct Sensing

Before proceeding to the discussion of the new com-
pressive sensing schemes, we first present the results
of a direct sensing (DS) scheme, where all the sensing
nodes directly transmit the measured data to the FC, and
no compression is performed during the transmission
or detection process. The results will be used as a
benchmark for the evaluation of the new schemes.

If the average power budget of a node is P;, with duty
cycle A7, the instantaneous power assumed by a node
during actual transmission is thus P; = % ~ nlognP;.
To ensure the system is scalable, it’s assumed that
the total transmission power, F;, of all the nodes is
fixed. Thus P; ~ %. Correspondingly, the instantaneous
transmission power of the i-th sensing node satisfies
P, ~logn- P,

The data collected by the FC of a system employing
EI-MAC can be represented as

Pilogn
Ve=1/ tlag (s+w)+z

)
where Ye = [ycl,"' 7ycn]T? s = [817"' >8n]Ta w =
[wi,--- ,wy]T, and z = [z1,---, 2,7 are size n x 1

vectors containing received samples, data samples, sens-
ing noise, and additive white Gaussian noise (AWGN),
respectively, and « is the pathloss exponent. The covari-
ance matrix of z is agln, with I,, being a size n X n
identity matrix.

In DS, the FC performs estimation of the data vector

with the least squares (LS) method as, § = R{—Zgnyc,
and the corresponding NMSD is
1 R 1 %02
Dy = [E(ls =8l5] = o0 + o p” ~ o (6

The results in (6) indicate that the NMSD for DS is

lower bounded by the sensing noise variance, o2,

B. Compressive Detection

The data vector is compressible in the sense that it
can be well approximated by £ < n transform domain
coeflicients as described in (2) and (3). Motivated by this
fact, we propose to perform estimation of the transform
domain coefficients, {Gi}le, instead of directly estimat-
ing the original data vector, s, at the FC. This method
is denoted as CD since the compressible feature of the
data is utilized during the detection, and the transmission
process is the same as that of the DS scheme. It’s
assumed that the FC has knowledge of the transform
domain basis, which can be obtained by analyzing the
statistical properties of the received data samples.
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Upon receiving the data vector y. as given in (5),
the FC performs LS estimation of the transform domain
coefficients, {Oi}le, by projecting the received sample
vector onto the first & transform domain bases. The
estimated data vector can then be written as

Z T i) b

sk

P, logn
k
- (k) 0; i 5. .
sV 4 izzlwz% + P logn ; Zid;, (1)

where @; = wl¢;, % = zT ;. Since ¢;¢p7 = I,,, the
variances of w; and Z; remain afv and 03, respectively.
From (3) and (7), the NMSD of the CD scheme,

Dy, = LE||ls — §®)|2, can be written as
k k
Dy =0 (ge )+ ok —— ot ®

where 6, = Pt In (8), the first term, which is due to
the (G-compressibility of the data vector, decreases with
k, yet the second and third terms, which are due to the
sensing and transmission noises, increase with k.

Next we will find the optimum value of & that mini-
mizes D, and establish the asymptotic behavior of D,
as n — o0o. Before moving on to the main results, we
first present the following Lemma, which will be used
during the asymptotic analysis.

Lemma 2: Consider two real valued sequences, {\,}
and {pn}. If Ay ~ pp and 0 < p,, < 1 for all n > ng >
0, then (i) A\, ~ pyt; (ii) log At ~ log iy, t; and (iii)
An + Anlog Aot~ pin 4 pn log iy

Proof: The proof is omitted here for brevity. [ ]

Theorem 1: For a wireless sensor network with EI-
MAC, if the data vector is B-compressible and the FC
performs compressive detection, then the NMSD satisfies

(€))

_ logn
Dey = pin(1+10g€) + pn log iz * ~ ==,

where pn, = 5 (44 + —=—). The value of k leading to

nlogn

the above asymptotic behavior scales as k ~ logn.
Proof: Define D, = Ee Pk + 2+ nk’fg —0, then

D, = D.,. It can be easily shown that D, is convex
in k, thus the value of k that minimizes D, can be
obtained by solving %DCD = 0. The result is

2
k=%log lﬁg (‘%u o

nlogn
Substituting (10) into the definition of D, leads to
Dq, (1

)_1 = Llog(ezh). (10)
= 3log(ém"):

= pin(1+log &) + pin log ;"

From Lemma 2,
1 logn .
-+ = Since

1, logn
have e

It’s easy to show that u, ~
we have k£ ~ logn, and D

lim, 00 (n +i—> /ﬁ— =1, we

Af;—, and this completes the proof. [ |

It can be seen from the results in Theorem 1 that the
distortion tends to 0 as n — oo. Therefore, the limit
on NMSD imposed by sensing noise variance, o2, as
shown in (6) for the DS scheme, is removed in the CD
scheme by exploiting the special compressible structure
of the data vector during the detection process at the FC.
Therefore, as n — oo, the newly proposed CD scheme
can achieve a better NMSD with less transmission power

compared to the DS scheme.

1
n
~

C. Compressive Transmission

We propose an alternative sensing method that utilizes
the compressibility of the data vector during the process
of transmission. The CT scheme is implemented with the
help of a hierarchical two-hop sensing scheme, where
the nodes are classified into two categories, sensing
nodes and compressing nodes. The sensing nodes collect
the measured data at their respective locations, and
then transmit them asynchronously to the compressing
nodes. Upon collecting data from all the sensing nodes,
the compressing nodes perform LS estimation of the
transform domain coefficients, and deliver the estimated
transform domain coefficients to the FC.

The compressing operation can be performed indepen-
dently by one node, or collaboratively by up to k£ nodes,
where k < n is the dimension of the compressed signal.
To simplify notation, it is assumed in the following
discussion that one node is dedicated as the compressing
node. Results obtained under this assumption are directly
applicable to a system with multiple compressing nodes.
In the following analysis, we consider the worst case
scenario that all the sensing nodes have equal distance
to the compressing node at d = 2p, with p being the
radius of the monitored area V.

Based on the EI-MAC protocol, the information re-
trieved at the compressing node from the i-th sensing
node can be modeled as

P, )
Ysi = d—j(si+wi)+ui, fori=1,---,n, (12)
where P is the instantaneous transmission power of a
sensing node, and u; is AWGN with variance 03. Upon
collecting information from all the sensing nodes, the
compressing node projects the received vector, y; =

[Ys1, -~ ,ysn]T, onto the first k& bases of the transform
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domain as

yio= \/ (9 + ;) +a, fori=1,-

where i; = ul'¢; with u = [uy, -+ ,un)7, and the vari-
ance of 4; remains o2. It’s assumed during the analysis
that the compressing node has ideal knowledge of the
transform domain basis. This information either can be
extracted by the compressing node through data analysis,
or can be obtained from the FC in the communication
downlink [7].
The average power, Py = £ ™% E|w;[2, is

Py = da<kzo+a) oisat 2+ 03] + 02,04

where 00 = E|0; |2 and the last equality is based on the

-k, (13)

fact that 1]E||s||l riop =1
The estimated coeﬁicient vector, %) =
[01,--- ,0%|T, is transmitted to the FC. The signal

received at the FC can be written as

[ P,
= (k)
Ye [P, — 9 + 2,

where P, is the instantaneous transmission power of the
compressing node. The data vector can then be estimated
at the FC by performing the LS detection on y,. as

(dl)apﬁ Z v

(15)

(k) =

. de - dl)eP,
:S(k)+zwi¢i+vfzui¢i+ ( ) 02 ;.
i=1 8 q=1

The NMSD for §) can be represented by

o\ ko kd%2 K (dl)®Pyo?
= Bk 2 — 2
D=0 (e )+ a2+~ o 5p = (19

The scaling behavior of D, is presented in the fol-
lowing Theorem.

Theorem 2: For a wireless sensor network with EI-
MAC and a fixed total transmission power, if the data
vector is [(-compressible, then the normalized mean
square distortion, D, satisfies

_ logn
Dy = mn(1 +log€) +mnlognyt + 6. ~ i ,

17

(02 + 85)(1 + &), with &, = L2
and 6, = lc;fz. The value of k leading to the above

asymptotic behavior scales as k ~ log n.

where 7, = %%

_ Proof: Substituting (14) into (16), we have D =
D, with

D, = te Pk be. (18)
It’s easy to verify that D, is convex in k. Thus the

value of k£ minimizing D, can be obtained by solving
%DCT = 0, and the result is

k
+- (02, + 65 + 6,02 + 0c0s) +

1 _
k= 3 log (¢ny 1) - 19)
Substituting (19) expression into (18) leads to
Der = (1 +log€) +malog g + 0. (20)

For a system with duty cycle nlo —, the total average
transmission power for n transm1ss1ons by the sensing
nodes is P;; = n’f—é;? Similarly, the total average trans-
mission power for k transmissions by the compressing

node is Pjy = %. Thus,
P, = logn- Py, (21a)
P = %logn - Py. (21b)

Substituting (21) into the definition of 7,, leads to
9()hi(n) < np < g(n)hu(n). (22)

where g(n) = 11 (U n lognUP“> h(n) =
[1 + nlognP ] and hy(n) = [1 + WE] It’s easy

to show that g(n)hi(n) ~ g(n)hy(n) ~ n~!, thus
7 ~ n~1. Combining the above analysis with (19) and
Lemma 2, we have k ~ logn.

Thus, from (20) and Lemma 2, we have D, ~ % +
l—oﬁ—" + % ~ l%gl—" This completes the proof. [ |

The proof of Theorem 2 doesn’t specify how the total
power, P, = P;; 4+ P9, should be allocated between the
transmissions by the sensing nodes and the compressing
nodes, respectively. Define ( = P , we will next 1dent1fy
the value of ¢ that can asymptotically minimize D,

Substituting (21) into (18), we have
= k 1 d%o? 1 1%g2
— Bk T 2 u z
Pa=e 4 1% Y ognch, Tloan (TR '
A0
kE  1%02%02 k (Id)*a20?
nlogn (1—QF. ' n(logn)?P? ¢(1—0)
£200)

It’s clear from the above equation that the optimum
value of ¢ depends on f1({) + f2(¢). Since f2({) scales
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to 0 much faster compared to f;(¢) with the increase of
n, when n is large, it’s sufficient for us to evaluate the
optimum value of ¢ by using f1(¢) alone.

It’s easy to show that f;(() is convex in ¢ € (0,1),
thus the value of ¢ that minimizes f1({) can be obtained
by solving d% f1(¢) = 0, and the result is

doo? —+/(d)>o2 o2
{ T (dh) Uuaz, dao-z% #ladz,

d~g2—l>g2 5 :
a2 _ ja
d%o;, =1%o}

0.5,

(= (23)

Comparing the results in Theorems 1 and 2 indicates
that, if p < [, the newly proposed CD and the CT
sensing schemes have similar scaling performances in
terms of NMSD. This result is quite surprising, because
it is commonly believed that transmitting compressed in-
formation can lead to better power efficiency than trans-
mitting uncompressed information, due to the high en-
ergy cost of communication relative to computation. The
similar performance between the CT and CD schemes
can be explained by the fact that the salient information
of a sparse signal is preserved in the transform domain
coefficients, and the signal-to-noise ratio (SNR) per
transform domain is similar for both the CT and the CD
schemes.

IV. NUMERICAL EXAMPLES

To qualitatively demonstrate the fidelity of the sensing
schemes, a (1024 x 1024)-pixel airport image [9] as show
in Fig. 2(a) is used as the data to be sensed. The image
is rich in edges, textures, and details, such that it can
effectively demonstrate the performance of the proposed
schemes. The main parameters used in the examples
are defined as follows. The signal-to-sensing noise ratio
(SSNR) is defined as 7, = Pg}. The SNR at the FC is

g
defined as 7, = aﬁ%, which is equivalent to the SNR
observed at the FC if all the power is employed by a
single transmitter at distance [ from the FC. It’s assumed
that 02 = 02, o = 3.6, p = 1, and [ = 10. The total
power is normalized to P, = 1.

First we verify the S-compressibility of the image used
in the examples. Fig. 1(a) illustrates the NMSD between
the original image, which is shown in Fig. 2(a), and its k-
approximation. It’s clear from the figure that when k& <
n, the NMSD can be accurately modeled by the function
£e~Pk which is depicted as a dashed curve in the figure.
The parameters, £ and (3, are solved by applying the
LS methods over the experimental NMSD value when
k < 2, and the results are £ = 0.0196, 3 = 6.58 x 107°.

The NMSD between the original data and the data
recovered from different sensing methods is shown in

— actual NMSD

- - = exponential approximation

NMSD

0 2 4 6 8 10
LS x10°

(a) NMSD of the k-approximation.

—e— simulation
- = analytical

CTand CD

x10°

(b) NMSD vs. k

Fig. 1. (-compressibility of the sensing data.

(c) CD

d CT

Fig. 2.
methods.

Comparison of images recovered from different sensing

Fig. 1(b). The parameters are 7, = 7. = 20 dB.
The markers are obtained from empirical simulation.
The dashed curves for the DS, CD, and CT methods
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N o simulation
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Fig. 3. NMSD v.s. SNR at the FC

are obtained from (6), (8), and (16), respectively. It’s
interesting to note that the NMSD results for the CD
and the CT schemes are almost the same. This can be
explained by the fact that the noise at the compressing
node is negligible compared to that at the FC given
I > p and 02 = o2. For the CD and CT schemes,
the value of & that minimizes the NMSD is 385,202,
which is far less than the actual data dimension, n =
1024 x 1024 = 1,048,576. The empirical value of &
also matches the optimum value of k£ predicted through
analytical approximations given in (10) and (19) for the
CD scheme and CT scheme, respectively.

Fig. 2 compares the original image with the recovered
images at the FC with different sensing schemes. The
parameters are: v,, = 10 dB and 7, = 0 dB. Under
this configuration, the optimum value of k£ is 31,106,
which is calculated from (10) and (19). It’s obvious from
Fig. 2 that the image recovered from DS is buried by
the sensing noise, yet the images recovered from the
CD and CT schemes preserve most of the key features
of the original image, including the edges and textures.
With the parameters used in this example, the NMSD for
the DS, CD, and CT schemes are 0.1790, 0.0249, and
0.0247, respectively.

The last example demonstrates the distortion behaviors
of various sensing schemes as functions of .. The SSNR
is 7 = 20 dB. When v, — oo , the NMSD of the
DS method is lower bounded by o2 = 0.01 as in (6),
and the NMSD of the CD and CT schemes is lower
bounded by ¢e=P* + £52 as in (8) and (16). For NMSD
at 1072, the required SSNR for the CD/CT schemes is
14 dB lower than that of the DS scheme. In addition, the
CD/CT methods can actually achieve a better distortion
performance with less transmission power. For example,
the NMSD of the CD/CT schemes at v, = 20 dB is less

than the NMSD of the DS scheme at v, = 30 dB.

V. CONCLUSIONS

A cross-layer, ultra-low power, high fidelity com-
pressive wireless sensing mechanism for infrastructure
monitoring was proposed in this paper. The wireless
nodes transmit information through an asynchronous EI-
MAC protocol, which can a.a.s. achieve collision-free
communications. Enabled by the EI-MAC protocol, two
ultra-low power wireless sensing schemes, CD and CT,
were developed by leveraging on the the correlation
among the data collected by spatially distributed sensors.
Theoretical analysis demonstrates that, when the inter-
sensor distance is negligible compared to the sensor-FC
distance, the two ultra-low power sensing schemes have
similar distortion behaviors scaling with O q%glﬂ) Nu-
merical examples demonstrated that the newly proposed
CD and CT sensing schemes with EI-MAC can achieve
a power saving of as much as 14 dB.
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