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Connectivity of Mobile Linear Networks with
Dynamic Node Population and Delay Constraint

Jingxian Wu, Member, IEEE

Abstract—The connectivity properties of a mobile linear net-
work with high speed mobile nodes and strict delay constraint
are investigated. A new mobility model is developed to represent
the steady state node distribution, and it accurately captures the
statistical properties of random node arrival, time-varying node
speed, and the distinct behaviors of nodes following different
traffic patterns. With the mobility model, the statistical properties
of network connectivity are studied and identified. Unlike most
previous works that do not consider the impacts of transmission
latency, which is critical for real time applications, this paper
identifies the quantitative relationship between network connec-
tivity and delay constraint. The results are applicable to both
delay constrained networks and delay tolerant networks. The
connectivity analysis is performed with a novel geometry-assisted
analytical method. Exact connectivity probability expressions are
developed by using the volumes of a hypercube intersected by
a hyperplane, and a hyperpyramid. The geometry-assisted an-
alytical method significantly simplifies the connectivity analysis.

Index Terms—Network connectivity, mobile linear network,
delay constraint, n-cube.

I. INTRODUCTION

NETWORK connectivity is a critical metric for the plan-
ning, design, and evaluation of ad hoc networks. Two

nodes in a network are connected if they can exchange infor-
mation with each other, either directly or indirectly, within a
certain latency constraint. A network is said to be connected
if any pair of nodes in it are connected.
In many practical networks, such as vehicular ad hoc

network (VANET) [1], [2], the nodes are moving at a high
speed, and this results in a rapidly changing network topology
with dynamic node population, which has profound impacts
on network connectivity [3]. If the network is delay tolerant,
then node mobility can improve network connectivity by uti-
lizing a store-and-forward scheme, which allows intermediate
nodes to temporarily store information and deliver it at a
different location [4], [5]. On the other hand, most practical
networks have strict constraints on transmission latency, which
requires intermediate nodes to immediately forward received
information to the next hop. Such a scheme is denoted as
receive-and-forward in this paper. Nodes employing receive-
and-forward need to maintain a relatively high transmission
power to ensure the connectivity of the entire network. If the
transmission power is too low, the nodes might be separated
into isolated clusters; if the transmission power is too high,
it will generate unnecessary interference beyond the intended
receiver. Therefore, it’s essential to identify the impacts of key
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network parameters, such as node mobility, delay constraint,
transmission power (or transmission range), on the connectiv-
ity probability of a mobile linear network.

The study of network connectivity has attracted consider-
able interests recently [6] – [15]. Most of the connectivity
analyses were performed for networks with randomly dis-
tributed stationary nodes [6] – [10]. In [6], the asymptotic
critical transmission power of a disk-shaped two-dimension
(2D) network is expressed as a scaling function of the number
of nodes, n, when n → ∞. A connectivity upper bound was
derived in [7] for a special 2D network with a triangular lattice
topology. VANET usually takes a one-dimension (1D) linear
model with all the nodes distributed along a straight line. An
approximated connectivity probability for a 1D network is
presented in [8]. Exact connectivity probability of a 1D net-
work with uniformly distributed stationary nodes is obtained in
[9] and [10] with different approaches. Results in the above
mentioned works are based on the assumption of stationary
nodes. There are limited works on the connectivity of net-
works with mobile nodes [3], [5], [11] – [15]. The critical
transmission range in a sparse mobile network is studied in
[11] with computer simulations. Hybrid numerical-simulation
analysis is performed in [12] to identity the approximated
connectivity of a 2D network with stationary or mobile nodes.
The exact connectivity probability of two nodes with distance
l on a linear network modeled by a Poisson point process
is presented in [13], and the result was extended in [14]
by considering the effects of interference. A comprehensive
mobility model for VANET is presented in [15] by considering
the arrival and departure of nodes at predefined entry and exit
points along a highway.

Most of the aforementioned works employ the receive-and-
forward scheme, where the transmission delay is mainly con-
tributed by the processing time of the forwarding operations
performed at the intermediate nodes. As a result, the one-
way transmission delay is directly related to the number of
hops involved during the information delivery process. To
meet the strict latency constraint of real time applications,
it is necessary to limit the maximum number of hops in-
volved during information transmission, and such a limit has
significant impacts on network connectivity. To the best of
the author’s knowledge, there is no works in the literature
devoted to the identification of mobile network connectivity
under delay constraint.

This paper focuses on the analysis of network connectivity
for a linear network with high speed mobile nodes, dynamic
node population, and strict delay constraint. A new mobility
model is developed with the tools and theories from M/G/∞
queuing systems [16], and it captures the effects of random
node arrival, time-varying node speed, and distinct behaviors
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of nodes following different traffic patterns. The mobility
model is more comprehensive and practical compared to the
stationary network models used by most previous works. With
the new mobility model, the statistical properties of network
connectivity are studied. The impacts of delay constraint on
network connectivity are investigated with an analytical bound
that establishes the quantitative relationship among transmis-
sion delay, source-destination distance, and the number of
hops required for transmission.
The connectivity analysis is performed with the assistance

of an innovative geometry-assisted analytical method. Specif-
ically, the volumes of two n-dimensional convex polytopes,
including a hypercube (n-cube) intersected by a hyperplane,
and a hyperpyramid, are derived. The geometric results signif-
icantly simplify the connectivity analysis, and they lead to ex-
act closed-form network connectivity probability expressions.
The results provide insights on the operations for both delay
constrained network with the receive-and-forward scheme, and
delay tolerant network with the store-and-forward scheme.
Numerical examples demonstrate that the new analytical re-
sults can accurately capture the statistical properties of mobile
linear networks with fast changing network topologies and
node population, and they can be used to guide the design
and analysis of VANET and other linear networks.
The remainder of this paper is organized as follows. Section

II presents a new mobility model of a mobile linear network.
Section III is devoted to the geometric analysis of the volumes
of a hyperplane-intersected n-cube, and a hyperpyramid. Sec-
tion IV presents the exact connectivity probability for a mo-
bile linear network with the new geometry-assisted analytical
method. Numerical examples are presented in Section V, and
Section VI concludes the paper.

II. SYSTEM MODEL AND PRELIMINARY STATISTICS

A. Mobility Model

Consider a section of a multi-lane unidirectional highway
defined by the interval L = [0, L]. Each node enters the
network at x = 0, and exits at x = L. The node mobility
is modeled after the following assumptions.

A.1) Nodes are divided into I classes corresponding to vehi-
cles on different lanes. Nodes belonging to the same class
share independently and identically distributed (i.i.d.)
mobility properties.

A.2) A class i node enters the network following a Poisson
distribution with arrival rate λ0i, i = 1, · · · , I .

A.3) The time that a class i node spends on a section of the
highway, [x0, x0 + x], is a random variable (RV), Ti(x),
with mean proportional to the section length x, i.e.,

μ
T i(x) =

∫ ∞

0

τf
Ti(x)(τ)dτ =

x

νi
, (1)

where f
Ti(x)(τ) is the probability density function (pdf)

of Ti(x), and νi is a scaling factor related to the distri-
bution of class-i node speed.

A.4) Nodes can freely pass each other.

Assumption A.3) can be satisfied by assuming that the
node speed is a stationary random process. In this case, Ti(x)
can be written as Ti(x) =

∫ x0+x

x0

1
Vi(y)dy, where Vi(y) is

the random speed for a class-i node at location y. Taking
expectation on both sides of the above equation leads to
μ

Ti(x) = E

[
1

Vi(y)

]
x, or νi = 1/E

[
1

Vi(y)

]
, with E(·) denoting

mathematical expectation. The parameter νi is independent of
location or time due to the stationary assumption.
With the above mobility assumptions, at any moment t, the

number of nodes inside [0, L], N(t), and the location of a
given node inside [0, L], X(t), are random variables. We are
interested in the steady state distribution of N(t) and X(t) as
t → ∞, and the results are summarized as follows.
Lemma 1: Consider a length-L linear network with node

mobility described in assumptions A.1) - A.4). At steady state
(t → ∞), the number of nodes in [0, L] follows a Poisson
distribution with parameter λ = L

∑I
i=1

λ0i

νi
, and these nodes

are independently and uniformly distributed inside [0, L].
Proof: 1) Based on assumptions A.2) and A.3), each class

of nodes can be modeled as an M/G/∞ queuing system [16],
given the facts that the nodes interarrival time is exponentially
distributed with Markovian property (M), the service time,
Ti(L), is generally distributed (G), and all nodes can be served
immediately upon their arrival (∞ number of servers). Let
Ni(t) denote the number of class-i nodes inside [0, L] at time
t, then mapping the analysis of M/G/∞ queue, we have

P{Ni(t)=n}=
∞∑

k=n

P{Ni(t)=n|Ki(t)=k}P{Ki(t)=k} , (2)

where Ki(t) is the number of class-i nodes that arrive during
[0, t], and it follows a Poisson distribution with parameter λ0it.
Since a node is either inside or outside [0, L], Ni(t) condi-

tioned onKi(t) follows a binomial distribution with parameter
αi(t), which is defined as the probability that a node arriving
between [0, t] is still within [0, L] at time t. For a node arriv-
ing between [0, t], αi(t) =

∫ t

0 P {Ti(L) ≥ t − τ} ft0|t(τ)dτ ,
where Ti(L) is the amount of time that a class-i node spends
on [0, L], and ft0|t(τ) is the conditional pdf of the node’s
arrival time, t0, given the fact that the node arrived between
[0, t]. For Poisson arrival, ft0|t(τ) = 1

t , for 0 ≤ τ ≤ t [17,
Theorem 5.2]. Let F

Ti(L)(τ) denote the cumulative distribution
function (cdf) of Ti(L), we have

αi(t) =
1
t

∫ t

0

[
1 − F

Ti(L)(τ)
]
dτ. (3)

Substituting the binomial distribution, P (Ni(t) =
n|Ki(t) = k), into (2) leads to P{Ni(t) = n} = λn

i (t)
n! e−λi(t),

which is a Poisson distribution with parameter λi(t) =
λ0i

∫ t

0

[
1 − F

Ti(L)(τ)
]
dτ . Thus Ni � limt→∞ Ni(t) is Pois-

son distributed with parameter λi � limt→∞ λi(t) = λ0iL
νi
.

Since the sum of independent Poisson RVs is still Poisson
distributed [17], the total number of nodes inside [0, L], N =∑I

i=1 Ni, is a Poisson RV with parameter λ = L
∑I

i=1
λ0i

νi
.

2) Let Xi(t) denote the location of a class-i node at time
t, then

P {Xi(t) < x} =
1
t

∫ t

0

[
1 − F

Ti(x)(t − τ)
]
dτ. (4)

Let Xi denote the location of a class-i node
inside [0, L] as t → ∞, then for any interval
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[a, b] ⊆ [0, L], the probability P {a ≤ Xi ≤ b} =
limt→∞ P {a ≤ Xi(t) ≤ b|0 ≤ Xi(t) ≤ L} can be written as

P{a ≤ Xi ≤ b} =
P{Xi ≤ b} − P{Xi ≤ a}

P{0 ≤ Xi ≤ L} =
b − a

L
, (5)

where the second equality is obtained from (1) and (4).
Since the above probability is true for all [a, b] ⊆ [0, L],
Xi ∼ U ([0, L]).
The result in Lemma 1 indicates that the steady state node

distribution for the mobile linear network with assumptions
A.1) - A.4) can be modeled by a homogeneous Poisson process
[13], [18], with parameter λ = L

∑I
i=1

λ0i

νi
.

B. Preliminary Statistics

Let Xm, for m = 1, 2, · · · , n, denote the position of
n independent nodes uniformly distributed over the interval
[0, L], i.e., Xm ∼ U ([0, L]). The number of nodes, N = n,
is a Poisson RV with parameter λ = L

∑I
i=1

λ0i

νi
.

Ordering the n RVs in an ascending order yields a group of
new RVs, X(1) ≤ X(2) ≤ · · · ≤ X(n). The joint distribution
of the ordered RVs are given in the following Lemma [19].
Lemma 2: Define X(o) = [X(1), X(2), · · · , X(n)]T , where

AT denotes matrix transpose, then the pdf of X(o) can be
written as fX(o)(x1, x2, · · · , xn) = n!

Ln , for 0 ≤ x1 ≤ · · · ≤
xn ≤ L . �
The study of node connectivity requires the investigation of

the distribution of the distance between node pairs. Define the
size (n − 1) × 1 distance vector as Y = [Y1, Y2, · · · , Yn−1]T

with Ym = X(m+1) − X(m). To facilitate analysis, denote
Y0 = X(1). Prefixing Y with Y0 leads to an extended distance
vector, Ỹ = [Y0, Y1, · · · , Yn−1]T . The distribution of Ỹ is
presented in the following Lemma.
Lemma 3: The pdf of the extended distance random vector,

Ỹ, is fỸ(y0, y1, · · · , yn−1) = n!
Ln , if

∑n−1
m=0 ym ≤ L and 0 ≤

ym ≤ L, form = 0, · · · , n−1, and fỸ(y0, y1, · · · , yn−1) = 0
otherwise.

Proof: The proof is in Appendix A.
The above preliminary statistics will be used to facilitate

the connectivity analysis. The network connectivity will be
investigated with a new geometry-assisted analytical method,
which translates the derivation of connectivity probabilities to
the evaluation of the volumes of certain convex polytopes.

III. GEOMETRIC RESULTS

In this section, the geometric properties
of two n-dimensional polytopes, Dn(d, L) =
{yn |

∑n
m=1 ym ≤ L, 0 ≤ ym ≤ d}, and Tn(d, L) =

{yn|
∑n

m=1 ym ≤ L, d < ym ≤ L}, ∀d, L ∈ R+, and
n ∈ N , are evaluated, where yn = [y1, · · · , yn]T , R+

is the set of positive real numbers, and N is the set of
natural numbers. The volume of Dn(d, L) is defined as
Vol [Dn(d, L)] =

∫
· · ·

∫
yn∈Dn(d,L)

dyn, and Vol [Tn(d, L)] is

defined in a similar manner.

A. Volume of Dn(d, L)
The set, Dn(d, L), can be geometrically interpreted

as an n-dimensional hypercube with edge length d,
Cn(d) = {yn |0 ≤ ym ≤ d, m = 1, · · · , n}, intersected by an

n-dimensional hyperplane, Pn(L) = {yn|
∑n

m=1 ym = L},
as illustrated in Figs. 1 and 2, for n = 2 and 3, respectively.
The direct evaluation of Vol [Dn(d, L)] for arbitrary n is

rather complicated. To gain insights, we start from the simple
case with n = 2, and then deduce the volume with arbitrary
n from this simple result. For n = 2, the volume of D2(d, L)
corresponds to the shaded areas as shown in Fig. 1. The areas
of the three cases can be calculated by using basic geometry,
and the result is

Vol [D2(d, L)] =

⎧⎨
⎩

d2, 0 ≤ d̄ < 1
2 ,

1
2

[
L2 − 2(L − d)2

]
, 1

2 ≤ d̄ < 1,
1
2L2, 1 ≤ d̄,

(6)

where d̄ = d/L. When n is large, it would be difficult to
evaluate the volume graphically. To gain further insights on
the volume of the polytope, we note the following identities
regarding d2,

d2 =
1
2

[
L2 − 2(L − d)2 + (L − 2d)2

]
. (7)

Observing the volume for n = 2 with the help of (7), and the
graphical representation of D3(d, L) in Fig. 2, we find that
the volume of Dn(d, L) at one level of d̄ can be obtained by
adding or removing a certain number of pyramids (triangles)
from the volume at the previous level of d̄. It is thus postulated
that the volume of Dn(d, l) for arbitrary value of n can also be
obtained by successively adding or removing a certain number
of hyperpyramids. This conjecture is stated and proved in the
following Theorem.
Theorem 1: The volume of the polytope, Dn(d, L), is

Vol [Dn(d, L)]=V k
n (d, L) � 1

n!

k∑
m=0

(−1)m

(
n

m

)
(L − md)n

,

if d̄ ∈ Lk(n), for k = 0, 1, · · · , n, (8)

where d̄ = d/L, and Lk(n) =
[

1
k+1 , 1

k

)
for k = 1, · · · , n−1,

L0(n) = [1,∞), and Ln(n) =
[
0, 1

n

)
.

Proof: The theorem is proved with mathematical induc-
tion and details are presented in Appendix B.
An interesting byproduct of Theorem 1 is a series expansion

of dn presented as follows.
Corollary 1: For n ∈ N and d, L ∈ R+, dn can be

expressed by the following series expansion

dn =
1
n!

n∑
m=0

(−1)m

(
n

m

)
(L − md)n

, ∀L ≥ nd. (9)

Proof: In the case L ≥ nd, the polytope, Dn(d, L)
is the same as the n-cube Cn(d). Thus Vol [Dn(d, L)] =
Vol [Cn(d)] = dn, for 0 ≤ d̄ ≤ 1

n . Eqn. (9) immediately
follows from Theorem 1.

B. Volume of Tn(d, L)

The set Tn(d, L), with L > (n− 1)d, can be geometrically
interpreted as an n-dimensional hyperpyramid with mutually
orthogonal side edges, and it has the same geometric shape as
illustrated in Fig. 2(a) for n = 3. The volume of Tn(d, L) is
presented in the following Lemma.
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d
L

L d

(a) 1 ≤ d
L
.

L

d

L

d

(b) 1
2
≤ d

L
< 1.

d

L

d

L

(c) 0 ≤ d
L

< 1
2
.

Fig. 1. Graphical representation of D2(d, L).

(a) 1 ≤ d
L
. (b) 1

2
≤ d

L
< 1 .

(c) 1
3
≤ d

L
< 1

2
. (d) 0 ≤ d

L
< 1

3
.

Fig. 2. Graphical representation of D3(d, L).

Proposition 1: The volume of the hyperpyramid, Tn(d, L),
is

Vol [Tn(d, L)] =
{

1
n! [L − nd]n , L ≥ nd,
0, L < nd.

(10)

Proof: The proof is in Appendix C.

IV. CONNECTIVITY OF MOBILE LINEAR NETWORKS

In this section, the connectivity properties of a delay con-
strained linear network are investigated with the help of the
geometric results from the previous Section.
Before moving on to the connectivity analysis, we first

establish an analytical bound that identifies the quantitative
relationship between delay constraint and node distance for
networks employing the receive-and-forward scheme. The
result is presented in the following Lemma.
Lemma 4: Consider a source node and destination node

separated by a distance md < l ≤ (m+1)d, with d being the
transmission range of a node. If the next hop is chosen as the
node that is the furthest one within the transmission range of
the current node, then the one way transmission delay between
the source-destination node pair is bounded by

l

(
tp
d

+
1
c

)
− tp ≤ td < l

(
2
tp
d

+
1
c

)
, (11)

where tp is the processing time at one intermediate node, and
c is the speed of light.

Proof: The proof is in Appendix D
The result in Lemma 4 indicates that the transmission

delay is proportional to the source-destination distance. Thus a
certain delay constraint can be achieved by limiting the source-
destination distance. Given delay constraint tmax, two nodes
with distance l satisfying l ≤ lmax � tmax/

[(
2 tp

d + 1
c

)]
is

guaranteed to have td < tmax. In the following analysis, we
will study the impacts of delay constraint tmax by limiting
the maximum distance between node pairs with lmax, which
guarantees the maximum delay is less than tmax.

A. Connectivity of an n-Node Network

We first study the connectivity of a linear network with a
fixed number of n nodes, and the results will be used to assist
the analysis of networks with dynamic number of nodes.
Theorem 2: For a linear network with n nodes uniformly

distributed over a section with length L, if the maximum
transmission range of each node is d, and the maximum
distance between any two nodes is bounded by lmax(≥ d)
due to a delay constraint, then the probability that all the n
nodes are connected is

Pn(d̄, l̄max)=

⎧⎨
⎩

∑k
m=0(−1)m

(
n−1
m

)[(
l̄max − md̄

)n+
n(1 − l̄max)(l̄max − md̄)n−1

]
, d̄≤ l̄max≤1∑j

m=0(−1)m
(
n−1
m

) (
1 − md̄

)n
, l̄max > 1

where l̄max = lmax/L, d̄/l̄max ∈ Lk(n − 1), d̄ ∈ Lj(n − 1),
for k, j = 1, · · · , n − 1.

Proof: When d̄ ≤ l̄max ≤ 1, the probability can be
expressed as Pn(d̄, l̄max) = P {Y ∈ Dn−1(d, lmax)}, which
can be alternatively written by

Pn

(
d̄, l̄max

)
= P{Y0∈ [0, L − lmax),Y∈Dn−1(d, lmax)}︸ ︷︷ ︸

P1

+

P{Y0∈ [L−lmax,L−d),Y∈Dn−1(d,L−Y0)}︸ ︷︷ ︸
P2

+P{Y0∈[L−d,L]}︸ ︷︷ ︸
P3

.

The inclusion of Y0 in the above expression enables the
utilization of Ỹ, which has a constant valued pdf. A constant
valued pdf allows the application of the volume result for the
connectivity analysis.
The probability P1 can be expressed as P1 = n!

Ln (L −
lmax)Vol [Dn−1(d, lmax)].
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Similarly, the probability P2 can be expressed as

P2 =
n!
Ln

∫ L−d

L−lmax

Vol [Dn−1(d, L − y0)] dy0. (12)

Since Vol [Dn−1(d, L − lmax)] assumes different expressions
when d

L−y0
falls in different definition intervals, the inte-

gration limit of (12) needs to be partitioned into several
sections as [L − lmax, L − d] = [L − lmax, L − kd) ∪(
∪k−1

m=1[L − (m + 1)d, L − md)
)
. With such a partition, the

probability in (12) can be written as

P2 =
n!
Ln

[∫ L−kd

L−lmax

V k
n−1(d, L − y0)dy0+

k−1∑
m=1

∫ L−md

L−(m+1)d

V m
n−1(d, L − y0)dy0

]
,

d̄

l̄max
∈ Lk(n − 1).

Solving the two integrals and simplifying lead to

P2=
k∑

m=0

(−1)m

(
n − 1

m

)(
l̄max−md̄

)n−d̄n,
d̄

l̄max
∈Lk(n − 1).

The probability, P3, can be calculated as P3 =∫ L

L−d
fY0(y0)dy0 = d̄n, where fY0(y0) = n

Ln (L − y0)n−1

[17] is used in the above equation. Combining P1, P2 and P3

in the above equations leads to the first equality in (12).
When l̄max > 1, the probability can be expressed as

Pn(d̄, l̄max) = P {Y ∈ Dn−1(d, L)} = Pn(d̄, l̄max = 1),
which leads to the second equality in (12).
The result in Theorem 2 gives the probability that all the

nodes are connected. In case some node pairs in the network
do not need to exchange information, the probability can be
considered as a lower bound. The result presented in Theorem
2 can also be considered as the connectivity probability of a
stationary network with n nodes uniformly distributed over a
linear section of the network.
In addition to the case that all the nodes are connected

with strict delay constraint, it is also of interests of the
probability that at least one pair of nodes can communicate
with each other. Such a probability gives a good indicator of
the connectivity of a delay tolerant network with the store-
and-forward scheme, because information can be eventually
delivered to its destination with such a scheme as long as the
network is not completely isolated.
Corollary 2: For the linear network described in Theorem

2, the probability that at least one pair of nodes are connected
is

Qn(d̄) =
{

1 −
[
1 − (n − 1)d̄

]n
, 1 ≥ (n − 1)d̄,

1, 1 < (n − 1)d̄.
(13)

Proof: The proof is in Appendix E.

B. Connectivity of Networks with Dynamic Node Population

Before proceeding to the connectivity probability of a
mobile network with random number of nodes, we have the
following Lemma that will be used during the connectivity
analysis
Lemma 5:

+∞∑
m=n+1

(
m − 1

n

)
xm

m!
= −(−1)n 1

n!
γ(n + 1,−x), (14)

where γ(n, x) =
∫ x

0
tn−1e−tdt is the lower incomplete

Gamma function.
Proof: The proof is in Appendix F.

Theorem 3: Consider a linear network of length L. The
number of nodes in the network follows a Poisson distribution
with parameter λ, and all the nodes are uniformly distributed
over [0, L]. If the maximum transmission range of each node
is d, and the maximum distance between any two nodes is
bounded by lmax, then the probability that all the nodes in the
network are connected is shown in (15) at the top of the next
page. In (15), d̄/l̄max ∈ Lk(∞), d̄ ∈ Lj(∞), k, j = 1, · · · ,∞,
and Lk(∞) =

[
1

k+1 , 1
k

)
.

Proof: The proof is in Appendix G.
We next evaluate the probability that at least one pair of

nodes are connected.
Corollary 3: Consider the linear network described in The-

orem 3, the probability that at least one pair of nodes are
connected is

Qλ(d̄) = 1 − e−λ
k+1∑
m=0

λm

m!
[
1 − (n − 1)d̄

]m
, (16)

for d̄ ∈ Lk(∞), k = 1, · · · ,∞.

Proof: The proof is presented in Appendix H.
The results in Theorem 3 and Corollary 3 are the steady

state connectivity probabilities of linear network with high
speed mobile nodes and dynamic node population. They can
be interpreted as the percentages of time that the network is
fully connected, or not isolated, respectively.

V. NUMERICAL EXAMPLES

We first investigate the accuracy of the mobility model. Fig.
3 shows the steady state distribution of node population and
node location under various configurations. In this example,
the random nodes are divided into two classes. The speed
of a class-i node is modeled as a stationary random process
uniformly distributed in [ai, bi]. It can be easily shown that
this implementation satisfies Assumption A.3) with parameter
νi = bi−ai

loge bi−loge ai
. The parameters, λ0i and [ai, bi], of each

class are shown in the figure. The length of the section is
10 km, and the data is collected over a period of 10,000
seconds. The analytical curves are generated by using the
mobility model presented in Lemma 1. Comparison between
the simulation results and analytical results reveals that the
mobility model renders an accurate representation of the
steady state distribution of random node population and node
location. In addition, the results indicate that increasing arrival
rate or reducing node speed leads to higher node density.
Fig. 4 compares the connectivity probabilities of networks

with fixed node population and dynamic node population
under different node densities. No delay constraint is assumed
in this example. The results in the figure lead to the follow-
ing observations. First, when the connectivity probability is
large, network with fixed number of nodes always outperform
network with dynamic number of nodes. Second, with the
increase of n or λ, the transition from 0 connectivity to
100% connectivity requires only a small variation in d̄. We
denote the value of d̄ corresponding to the 0 → 100%
probability transition as critical transmission range, d̄0(n), i.e.
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Pλ(d̄, l̄max)=

{
e−λ−

∑k
n=0

e−λ

n!

[
γ(n + 1, d̄nλ − l̄maxλ) − (1 − l̄max)λn+1

(
nd̄ − l̄max

)n
el̄maxλ−d̄nλ

]
, l̄max ≤ 1,

e−λ −
∑j

n=0
e−λ

n! γ(n + 1, d̄nλ − λ), l̄max > 1,
(15)
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Fig. 3. Verification of mobility model as t → ∞.

with n → ∞, if d̄ < d̄0(n), then Pn → 0; if d̄ > d̄0(n),
then Pn → 1. The critical transmission range decreases with
the increase of n. Third, the connectivity probability at λ = 5
and d̄ = 0 is greater than 0. This is due to the fact that the
network is defined as connected when n = 0 or 1, and these
two cases contribute to the non-zero probability at d̄ = 0.
Fig. 5 shows the connectivity probabilities under strict

delay constraint. The network has a bound on maximum node
distance of lmax = 2d, which translates to a maximum delay
of tmax = 4tp + 2 d

c . Other than the observations pointed out
in Fig. 4, it’s interesting to note that when the normalized
transmission range is small, e.g., d̄ < 0.5, increasing node
density leads to smaller connectivity probability. This seem-
ingly contra-intuitive result is contributed by the limit on the
maximum node distance, i.e., the larger the number of nodes
in a section of length L, the less likely that all the nodes will

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized transmission range

C
on

ne
ct

iv
ity

 p
ro

ba
bi

lit
y:

 P

 

 

fixed node population (simulation)
fixed node population (analytical)
dynamic node population (simulation)
dynamic node population (analytical)

n=λ=5

n=λ=10n=λ=30

Fig. 4. Connectivity probabilities of networks with lmax = L.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized transmission range

C
on

ne
ct

iv
ity

 p
ro

ba
bi

lit
y:

 P

 

 

fixed node population (simulation)
fixed node population (analytical)
dynamic node population (simulation)
dynamic node population (analytical)

n=λ=30n=λ=10

n=λ=5

Fig. 5. Connectivity probabilities of networks with lmax = 2d.

fall in a section with length lmax < L simultaneously. On the
other hand, when d̄ ≥ 0.5, we have l̄max = 2d̄ ≥ 1, which is
equivalent to the case of no delay constraint, and the results
are the same as Fig. 4.

Fig. 6 investigates the probability that at least one pair of
nodes are connected. This probability is used as an indicator of
the connectivity probability of delay tolerant network with the
store-and-forward scheme. The probability quickly saturates
to 1 with a slight increase of transmission range. At the same
node density, the connectivity probability of networks with
fixed number of nodes increases faster compared to that of net-
works with dynamic number of nodes. The difference between
the two networks gradually diminishes with the increase of
node density. Comparing results in Fig. 4 and Fig. 6 indicates
that the store-and-forward scheme outperforms receive-and-
forward scheme in terms of connectivity probability, at the
cost of unbounded transmission delay.
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Fig. 6. Probability that at least one pair of nodes are connected.

VI. CONCLUSIONS

The connectivity of mobile linear networks with high speed
mobile nodes, dynamic node populations, and strict delay con-
straint was investigated. With the tools from M/G/∞ queuing
system, a new mobility model was developed to represent the
steady state mobility properties that incorporate the effects of
random node arrival, time-varying node speed, and distinct
behaviors of nodes following different traffic patterns. The
statistical properties of network connectivity were investigated
with the new mobility model and a novel geometry-assisted
analytical method. The impacts of key network parameters,
such as node arrival rate, time-varying node speed, and trans-
mission delay constraint, are incorporated into exact closed-
form expressions of connectivity probabilities. It is observed
that the strict constraint on transmission delay seriously limits
the connectivity probability of mobile networks. The results
in this paper are also applicable to bi-directional network, and
they can be used to guide the planning, design, and evaluation
of VANET and other mobile linear networks.
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APPENDIX

A. Proof of Lemma 3

The extended distance vector, Ỹ = [Y0, Y1, · · · , Yn−1]T ,
can be expressed as a linear transformation of the ordered
vector, X(o). It can be easily shown that the Jacobian of the
transformation is 1. Thus, fỸ(y) = fX(o)(x), and Lemma 3
immediately follows from Lemma 2.

B. Proof of Theorem 1

Proof by induction. The proof for n = 1 is trivial. Assume
(8) is true for Vol [Dn−1(d, L)]. The induction part of the proof
is divided into three cases, d̄ ∈ Lk(n), for k = 1, · · · , n − 1,
d̄ ∈ L0(n), and d̄ ∈ Ln(n).

1) d̄ ∈ Lk(n), for k = 1, · · · , n − 1. Based on the volume
definition, when d̄ ∈ Lk(n), we have

V k
n (d, L)=

∫ d

0

Vol [Dn−1(d, L − yn)] dyn,

=
∫ L

kd

V k
n−1(d, z)dz +

∫ kd

L−d

V k−1
n−1 (d, z)dz, (17)

where the integration interval in the first equality is partitioned
as [0, d] = [0, L − kd] ∪ [L − kd, d] based on the definition
interval of V k

n−1(d, L).
Solving the two integrals in (17) with the definition of

V k
n (d, L) and simplifying lead to

V k
n (d, L) =

1
n!

{
Ln +

k∑
m=1

(−1)m

(
n

m

)
(L − md)n

}
, (18)

where the identity,
(

n
m

)
=

(
n−1
m

)
+

(
n−1
m−1

)
, is used in the

simplification. Eqn. (18) simplifies to (8).
2) d̄ ∈ Ln(n). The volume can be directly written as

V n
n (d, L) =

∫ d

0

V n−1
n−1 (d, L − yn)dyn, (19)

due to the fact that 0 ≤ d
L−yn

< 1
n−1 in the entire integration

interval yn ∈ [0, d]. Simplifying the above equation with the
definition of V n−1

n−1 (d, L) leads to (8).
3) d̄ ∈ L0(n). The condition 1 ≤ d̄ means 0 < yn ≤∑n
m=1 ym ≤ L ≤ d. Thus the integration limit of yn is [0, L].

In this case, V 0
n (d, L) can be calculated as

V 0
n (d, L) =

∫ L

0

V 0
n−1(d, L − yn)dyn. (20)

which can be simplified to V 0
n (d, L) = 1

n!L
n.

C. Proof of Proposition 1

When L < nd, Tn(d, L) is an empty set, thus with volume
0. The result when L ≥ (n − 1)d is proved with induction.
When n = 1, Vol [T1(d, L)] = L − d. Assume the result is
true for n− 1. Vol [Tn(d, L)] can be recursively expressed as

Vol [Tn(d, L)] =
∫ L−(n−1)d

d

Vol [Tn−1(d, L − yn)] dyn. (21)

Simplifying the above result leads to (10).

D. Proof of Lemma 4

Let h denote the number of hops. The one way transmission
delay can be expressed as td = (h − 1)tp + l/c. The number
of hops involved during transmission over distance l can be
bounded as m + 1 ≤ h ≤ 2m + 1, which can be proved by
contradiction. If there are h ≤ m hops between the two nodes,
then the maximum distance that is covered by the h hops is
hd ≤ md < l, which can not cover the distance between
the source-destination node pair. Thus h ≥ m + 1. If there
are h ≥ 2m + 2 hops between the two nodes, then the total
distance covered by the h hops can be written as

l =
2m+2∑
k=1

lk +
h∑

k=2m+3

lk ≥
m+1∑
k=1

(l2k−1 + l2k) , (22)
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where lk is the distance covered by the k-th hop. Since the
distance covered by two consecutive hops must satisfy l2k−1+
l2k > d, we have l > (m + 1)d, which contradicts with l ≤
(m + 1)d. Thus h ≤ 2m + 1.
Substituting the hop bound into the expression of td, and

noting that md < l ≤ (m + 1)d, we have the result in (11).

E. Proof of Corollary 2

Define Qc
n(d̄) = 1 − Qn(d̄) as the probability that all the

nodes are isolated. If L < (n−1)d, then there must be at least
two nodes with distance less than d, otherwise the accumulated
distance of the (n−1) adjacent node pairs will be larger than
L. Thus Qc

n(d̄) = 0 for L < (n − 1)d.
When L ≥ (n − 1)d, we have Qc

n(d̄) =
P {Y0 ∈ [0, L − (n − 1)d],Y ∈ Tn−1(d, L − y0)},
which can be calculated as Qc

n(d̄) =
n!
Ln

∫ L−(n−1)d

0 Vol [Tn−1(d, L − y0)] dy0. Combining the
result with Proposition 1 leads to (13).

F. Proof of Lemma 5

Denote F (x) =
∑+∞

m=n+1

(
m−1

n

)
xm

m! . Differentiating F (x)
with respect to x yields

F ′(x) =
1
n!

+∞∑
m=n+1

xm−1

(m − 1 − n)!
=

xn

n!
ex.

Performing integration over F (x) leads to

F (x) = F (0) +
1
n!

∫ x

0

tnetdt = F (0) − (−1)n

n!
γ(n + 1,−x).

Since F (0) = 0, the proof is complete.

G. Proof of Theorem 3

If 1
k+1 ≤ d

lmax
< 1

k , then the connectivity probability can be
expressed as Pλ(d̄, l̄max) =

∑∞
m=0 Pm(d̄, l̄max)P {N = m},

which can be further written as

Pλ(d̄, l̄max)= e−λ + e−λ
∞∑

m=1

min(m−1,k)∑
n=0

(−1)n

(
m − 1

n

)
×

[
βm

n

m!
+ (1 − l̄max)λ

βm−1
n

(m − 1)!

]
, (23)

where βn =
(
l̄max − nd̄

)
λ, and P0(d̄) = 1 is used in the

second equality. Exchanging the order of summation in (23),
and noting the fact that n ≤ k < m, we can obtain (15) by
using the result from Lemma 5.

H. Proof of Corollary 3

If 1
k+1 ≤ d

L < 1
k , then the probability, Qλ(d̄) =∑∞

m=0 Qm

(
d̄
)
P{N = m}, can be expressed as

Qλ(d̄)=1 + e−λ +
k+1∑
m=2

Qm

(
d̄
)
P{N = m}+

∞∑
m=k+2

P{N = m}.

Where Q0(d̄) = Q1(d̄) = 1 is used. Simplifying the above
equation with Corollary 2 leads to (16).
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