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Low Complexity Soft-Input Soft-Output Block
Decision Feedback Equalization
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Abstract—A low complexity soft-input soft-output (SISO)
block decision feedback equalizer (BDFE) is presented for turbo
equalization. The proposed method employs a sub-optimum
sequence-based detection, where the soft-output of the equalizer
is calculated by evaluating an approximation of the sequence-
based a posteriori probability (APP) of the data symbol. The
sequence-based APP approximation is enabled by the adoption
of both soft a priori information and soft decision feedback, and it
leads to better performance and faster convergence compared to
symbol-based detection methods as used by most other low com-
plexity equalizers. The performance and convergence property of
the proposed algorithm is analyzed by using extrinsic information
transfer (EXIT) chart. Both analytical and simulation results
show that the new equalizer can achieve a performance similar
to that of trellis-based equalization algorithms, with a complexity
similar to linear SISO minimum mean square error equalizers.

Index Terms—Turbo equalization, sequence-based detection,
BDFE, soft decision feedback, EXIT.

I. INTRODUCTION

URBO equalization is a joint equalization and decoding

scheme used in communication systems with coded data
transmitted over inter-symbol interference (ISI) channel [1],
[2]. Turbo equalizers achieve performance improvement over
conventional equalizers and decoders by iteratively exchang-
ing soft extrinsic information between a soft-input soft-output
(SISO) equalizer and a SISO decoder. Trellis-based soft de-
coding algorithms, such as Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm [3], or soft output Viterbi algorithm (SOVA) [1], [4],
are usually employed in SISO equalizer/decoder to maximize
the sequence-based symbol a posteriori probability (APP).
For systems with high modulation levels and/or long channel
length, the trellis-based SISO equalizers become prohibitively
complex. Therefore, the design of low complexity SISO turbo
equalizers has attracted considerable interests recently [5] —
[14]. Current approaches to low complexity algorithms can be
roughly classified into three categories.

First, reducing the number of states in the trellis structure of
an ISI channel leads to sub-optimum trellis-based equalizers
[5], [6]. In [S5], the BCJR algorithm is performed over a
reduced state trellis, which is formulated by considering only
dominant taps of the equivalent channel. ISI introduced by
non-dominant channel taps are canceled by hard decisions [5],
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or soft decisions [6], from previous iterations. The complexity
of such equalizers grows exponentially with the number of
dominant channel taps.

Second, linear minimum mean square error (MMSE) based
SISO equalization algorithms [7] — [12] provide a reasonable
trade-off between complexity and performance. The MMSE
equalizers treat the data symbols as random variables with
mean and variance computed from the a priori information.
Complexity reduction in linear SISO MMSE algorithms is
mainly due to symbol-by-symbol detection, i.e., the APP of
each symbol is calculated individually based on a Gaussian
assumption of the MMSE filter output.

Third, non-linear SISO equalizers are designed by employ-
ing tentative hard decisions from the same iteration [13],
or previous iteration [14], for ISI cancellation. To reduce
error propagation arising from tentative hard decisions, a
soft decision feedback equalizer is proposed in [15], which
employs the a posteriori mean of the data symbols for ISI
cancellation. Similar to linear SISO equalizers, symbol-based
detection is used in the existing non-linear equalizers.

Motivated by the respective advantages and limitations of
the methods in the literature, we develop a new, non-linear,
sub-optimum sequence-based block decision feedback equal-
izer (BDFE). Many of the performance enhancing features
from the existing methods are used as building blocks of the
new algorithm. The BDFE filters are dynamically formulated
with the help of the a priori mean and variance of the data
symbols as in [7]-[12]; the decision feedback is used for
ISI cancellation as in [13]-[16]; specifically, the soft decision
feedback is employed to reduce error propagation as in [15].

The main contribution of the proposed method is the em-
ployment of a sub-optimum sequence-based detection. In the
proposed equalizer, the APP of each data symbol is calculated
by collecting information from all related samples at the re-
ceiver, whereas no trellis structure is used. The sequence-based
detection is made possible by utilizing soft decisions from both
current iteration and previous iteration, and it improves over
the symbol-by-symbol processing adopted by most existing
methods. The non-linearity of the proposed method arises from
decision feedback as well as the sub-optimum sequence-based
detection. The combination of the sequence-based detection,
along with those proven effective equalizer features, result in
an equalizer with better performance and faster convergence
rate.

The performance of the proposed algorithm is analyzed by
using the extrinsic information transfer (EXIT) chart [18],
[19]. Both analytical results and simulation results show that
the proposed algorithm can achieve a performance similar
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Fig. 1. Block diagram of a communication system with turbo equalization.

to that of trellis-based algorithms, with a complexity on the
same order as linear MMSE equalizers. In addition, the new
algorithm converges at a rate much faster compared to other
equalization algorithms, and this will further reduce the overall
complexity of the system due to the reduction of the number
of iterations.

The remainder of this papers is organized as follows.
System model with a brief introduction of turbo principle
is presented in Section II. The new SISO BDEFE algorithm
with sequence-based detection is developed in Section III. The
performance of the proposed algorithms is analyzed in Section
IV with the tool of EXIT chart. Bit error rate (BER) results
obtained from simulations under practical system configura-
tions are given in Section V, and Section VI concludes the

paper.

II. SYSTEM MODEL

The block diagram of a communication system employing
turbo equalization is shown in Fig. 1. At the communication
transmitter, the binary information, b,, € {—1,+1}, is passed
through a convolutional encoder followed by an interleaver,
and no trellis termination is used in the convolutional encoder.
The output of the interleaver is divided into blocks with length
K - N, where K = log, M, M is the modulation level, and
N is the number of modulated symbols per block. The output
of the interleaver can be denoted in vector form as x =
[x1,X2," - ,XN]T € BENXL where x,, = [z1, -+ ,7K] €
BIXK and AT is the transpose of matrix A. The modulator
maps K-bit data, x,, to one modulation symbol, s, € S,
where S is the modulation constellation set with cardinality
M.

The modulated data symbols are distorted by the ISI channel
and additive white Gaussian noise (AWGN). The discrete-time
representation of the communication system is

L—1
Yn = Zhlsn—l+2n7 forn=1,2,---,N.
=0

(D

where y,, is the symbol-spaced sample at the output of the
receive filter, z,, is the zero-mean AWGN sample, and h; is the
equivalent discrete-time composite channel impulse response
resulted from the cascade of transmit filter, ISI channel, and

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

receive filter [17]. The system model described in (1) can be
represented in matrix format as

y=Hs+z, 2
where y = [y1, - ,yy]T € CN¥l s = [s1,---,8,]T €
CN*1 and z = [21,---,2,]T € CN*! are the receive

sample vector, modulation symbol vector, and noise vector,
respectively, and the channel matrix H is defined by

ho 0 0 o0
H=| 0 hyr_ hg - 0 |ec™N. (3
0 - 0 hp ho

The system equation of (2) and the channel matrix defined
in (3) indicate that there is no inter-block interference (IBI).
The IBI-free communication is achieved by using a short guard
interval between blocks. Either zeros or known pilot symbols
with length L can be transmitted during the guard interval. The
guard interval results in a rate loss of L/(N + L) x 100%.

Turbo equalizer consists of a SISO equalizer and a SISO
convolutional decoder, which are separated by an interleaver,
I1(-), and a de-interleaver, II"(-). During each iteration, the
SISO equalizer calculates the a posteriori log likelihood ratio
(LLR) for each code bit x,, as

Pz, = +1]y)
Pz, = —1ly)

Using Bayes’ Rule, we can write (4) as

ZVx:rn:—Q—lP(y'X) Hn/;én P(x”,)
ZVx:zn:—lP(y|X) Hn’;ﬁn P(x”,)

LO(zn)

where Li(x,) £ In % is the a priori information of

bit z,, and it is obtained by interleaving the soft-output of
the convolutional decoder from the previous iteration. The a
priori information is assumed to be independent with each
other. In the first iteration, there is no a priori information
available and we have L;(z,) = 0,Vn.

The extrinsic LLR, Lo(z,) = A(x,|y) — Li(zy,), will be
de-interleaved to L(c,) = II7Y(Lo(x,)), which is used as

A(zy]y) =In 4

Az ly)=In

+LI(33H)
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Fig. 2. SISO block decision feedback equalizer.

the a priori information, or, soft-input, of the convolutional
decoder. The convolutional decoder calculates the extrinsic
LLR for each code bit by exploiting the code trellis structure
as well as the a priori information L;(c,,). The extrinsic LLR
for the code bit ¢,, can be expressed as

P(Cn:+1|L1(Cl),'--,L](CNC)) P(Cn=—|—1)
LO (Cn):ln —In R
P(cp=—1|L(c1), -+, L1(cy,)) P(e, =-1)
—_——

Li(cn)

where N, = N/R is the number of code bits in each block,
with R being the code rate, and N the number of bits per
block.

The extrinsic LLR at the output of the convolutional decoder
is interleaved as L;(x,) = II (Lo(cy,)), which is fed back to
the equalizer as the a priori information for the next iteration.
At the final iteration, the SISO convolutional decoder estimates
the original binary information, b,, € {—1,1}, as

bp,= argmax P (bn|L1(cl)+Lo(cl),- -~ Li(cy, )+LO(CNC)) .
bpe{—1,1}

The statistically independent a priori LLRs Lo(x,) and
Lo(cy,) are fed back to each other iteratively and lead to
improvement in BER performance. This essential feature
achieves the turbo principle. In both the equalizer and convo-
lutional decoder, the exact a posteriori LLR can be calculated
by using the BCJR algorithm or SOVA algorithm, which can
effectively exploit the trellis structure of the ISI channel and
convolutional code. However, the complexity of the trellis-
based equalizers increases exponentially with the modulation
level M and channel length L. The computational complexity
makes it prohibitively expensive to implement the trellis-based
BCIJR or SOVA algorithm in the equalizer.

III. TURBO EQUALIZATION USING SISO MMSE-BDFE

In this section, a SISO minimum mean square error based
block decision feedback equalizer (MMSE-BDFE) is proposed
for low complexity turbo equalization.

A. Development of SISO MMSE-BDFE

MMSE-BDEFE algorithm was originally developed in [16]
for hard-input hard-output equalization. In [16], the data
symbols are assumed to be zero mean since no statistical data
information is available at the input of the equalizer. With soft
a priori information, a SISO MMSE-BDFE algorithm with
non-zero mean data vectors and statistical filters are derived
in this subsection. The block diagram of the SISO MMSE-
BDEFE is shown in Fig. 2.
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The operation of the SISO MMSE-BDFE requires the a

Lo(xn,k) priori mean vector, S = E[s], and the a priori covariance

matrix, ® = E [SSH } , of the data symbols, where E denotes
mathematical expectation. The values of s and ® can be
calculated from the bit a priori LLR as [9]

M
Sp = Z XmP(Sn = Xm)7
m=1
M
ol = D (m = 50)*Psn = Xm). 5)
m=1

where x,, € S is an M-ary modulated symbol mapped
to the binary vector b = [by, -+ ,bk], P(spn = Xm) =
Hszl P(zp, = bg) is the symbol a priori probability, and
P(zy,, = by) is the bit a priori probability that can be derived
from the bit a priori LLR, Lj(x,), as

-1
Plan, = —1) = {1 + eLr(zﬂ , (62)
Pz, =+1) = 1- Pz, =-1). (6b)
The modulated information symbols, s, forn =1,--- | N,

can be assumed to be independent due to the bit interleaving
performed before modulation. Therefore, the covariance ma-
trix, @, is a diagonal matrix with Ugn on its diagonal.

To avoid instability caused by positive feedback during the
iterative operation, the a priori information of symbol s,
should not be used during the detection of s,, itself. For this
reason, during the equalization of s,,, define the a priori mean
vector, S,, and a priori covariance matrix, ®,,, as

= = = = = 17
Sp = [817"' 7Sn7170a5n+17"' 7SN] )
: 2 2 2
P, = dlag[asl,--- 7asn_171705n+17"' 7USN]' @)

In the definition, the mean and variance of s,,, which is the
symbol to be detected, are assumed to be 0 and 1, respectively
[9].

The MMSE-BDFE performs detection of the nth symbol,
Sn, through two block filters: a feedforward filter, W,, €
CN*N_ and a zero diagonal feedback filter, B,, € CV*V,
From Fig. 2, the decision vector before LLR calculation can
be written as

s=W,[y — Hs,] - B,[8§ — 5,,] + 5, ®)

where S, is the a priori mean vector of s as defined in (7). The
vector, 8 = [31, 82, -+ ,8n]T € CN*1, contains tentative soft
decisions from both current iteration and previous iteration.
The soft decision is defined as the a posteriori mean of the
symbol [15], and it can be calculated as

M
bn = Z P (sn = Xmly) Xm.

m=1

€))

where x,, € S is the modulation symbol, and P (s, = xm|y)
is the APP at the output of the equalizer. The adoption of a
posteriori mean based soft decision will reduce the effects of
error propagation, thus leading to better system performance.

The BDFE filters, W,, and B,,, are derived by following
the MMSE criterion. With the common assumption of perfect
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decision feedback, i.e., § = s, the error vector of BDFE can
be written as

€, = Wn(y - Hén) - (Bn + IN)(S - én)- (10)

where Iy is an N x N identity matrix. The orthogonality
principle, F [en(y—Hén)H} = 0, is used to minimize
the mean square error, E [|le,||?] = E [efle,], with the
expectation operation performed over both the data symbols

and noise, and the result is [16]

W, =G,®,H? (H®, H"4NIy) . (11)

where G, = B,, + Iy, ®,, is the a priori covariance matrix
as defined in (7), and Ng is the AWGN variance.

Combining (10) and (11), we have the error vector as e,, =
G,€,, with

en = @, HI(H®, HI+N)Iy) H(y —Hs) — (s —8) (12)

being the error vector of a linear MMSE equalizer. The
covariance matrix, .. = F [enef ], is

o, = &,-d,H” (HS,H' + NoIy)  HS,,

= <1>*1+iHHH -
n NO Y

where the identity, A~! + A7'C(G —DA~'C)"'DA~! =
(A—CG™!'D)™1, is used in the above equation. It should be
noted that the inverse of the a priori covariance matrix, ®,,, is
used in (13). Since the uncertainty of each symbol decreases
with the evolution of iterations, the a priori symbol variances,
which are on the diagonal of ®,,, might tend to zero after
several iterations. To avoid numerical instability caused by
the inverse of zero, a small threshold value, e.g., 0(2) =105,
is used to replace the diagonal elements of ®,, with values
less than o3. This approximation doesn’t apparently affect the
performance of the system due to the fact that, the matrix
&, depends on the inverse of ® 1 + NLDHH H. Therefore, a
small enough o will lead to an approximation error that is
acceptable under certain numerical precision limits.

From (13), the covariance matrix ®.. = F [enef
expressed by

(13)

] can be

—1
b, =G, (@;1 + iHHH) GH. (14)
No
Since E(||e,||?) = trace (®..), the solution of the MMSE
problem is equivalent to find unit diagonal matrix G, =
B,, + Iy such that trace (®..) is minimized. In addition, sub-
optimum decision feedback equalization requires the matrix
G, be in its minimum phase form, i.e., the power of the matrix
is concentrated on elements close to the main diagonal. The
solution satisfying the above conditions can be obtained from
the Cholesky decomposition of &1 + NLOHH H as [16]

15)

n

1
&'+ —H'H=LL,
+ No e
where L,, is an upper triangular matrix. Normalizing L,, with

respect to its main diagonal leads to

L’L, =UufD,U, (16)

where U,, € CN*V is an upper triangular matrix with unit
diagonal elements, D,, € RNXN s a diagonal matrix, and
L, = v/D,U,. With the Cholesky decomposition described
in (15), the feedforward matrix, W,,, and feedback matrix,
B,,, are

B, =

Un - IN,
W, = '

U,®,H" (H®,H” + NoIy) . (7)

It should be noted that Cholesky decomposition was also
adopted in [12] for a linear extending window MMSE method.
The Cholesky decomposition in [12] was used to assist the
recursive calculation of matrix inversion, and its function is
quite different from the Cholesky decomposition used in this
paper.

With the filters given in (17), the wireless communication
system described in (2) is converted to an equivalent system
as (c.f. (10))

I‘an(y—H@n) = Gn(s_gn)"'ena (18)

where r = [rq,79,--- ,7n5]T and e, are the receive sample
vector and noise sample vector of the equivalent system,
respectively, and G,, = B,,+1 is the equivalent channel ma-
trix. The covariance matrix of the equivalent noise component
is .. =D, L. Since D,, is diagonal, the noise components
are uncorrelated.

B. Sequence-based A Posteriori Probability Evaluation

The calculation of the soft output of the equalizer is
described in this subsection. The equivalent system described
in (18) enables a sequence-based detection, i.e., one symbol,
Sn, can be detected by collecting information of the entire data
block, r = W,,(y — Hs,,). This is different from the classical
decision feedback equalizers, e.g., [15], [16], where each data
symbol is detected by using only the current equalizer output.

From (18), define the sequence-based symbol APP,

P (sgf)|r , of the 4th iteration as

. P(r|sp)P(sn
P(ngr) _ (r|sn)P(s )7 (19)
p(r)
Since the sample sequence r depends on [sq,---,s,], the

likelihood function, P(r|s,), can be expressed as

P(xlsn) = P (rfs?). (20)
Wh_ere és’f) = [Sn? §§i_1)7 T 7§§::11)7 §’E’Li<)f’17 T 7‘§§\j)]’ with
[éfﬁrl, -+, 3] being soft decisions from the current itera-

tion, and [§§i71), e §S:11)] soft decisions from the previous

iteration. The equation holds since all the soft decisions are
deterministic.

In the equivalent system representation given in (18), the
noise samples are uncorrelated with a diagonal covariance
matrix ®.. = D 1. Based on the assumption that the equiv-
alent noise vector, e,,, is Gaussian distributed, the likelihood
function, P r|§,(1Z ) , can be approximated as

N
~ (i 1 Pn.k(Sn 2
p(r|s,(1)) ~ H 7Tf‘kexp{—%},

k=1 k

1)
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Tk — Ei\;k gr,1(n) (§l(i) — 51) ,

pn,k(sn) - @

Tn — gn,n(n)sn - Zi\inJrl gn,l(n) (él -
P = g ()50 = 315 gra(m) (570 =
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n<k<N,
51) k=mn, (22)

S — Zg:n+1 gk,l(n) (§l(l) — 51) , 1<k<n.

where 0} = d;}w with dy, 1, being the mth diagonal element of
the diagonal matrix D,,, and the values of py, ;(s,) is shown
in (22). In (22), gi,(n) is the element on the kth row and [/th
column of the equivalent channel matrix G,.

From (19) and (21), the APP of symbol s,, during the ¢th
iteration can be calculated as

N 2
P (sfﬁ = th-):Hﬁiak exp {_ |pn7k()2(m)| }

g
k=1 k

P(sy)
p(r)

where P(s,,) is the symbol a priori probability, and the value
of p(r) can be easily obtained by using the normalization

errvle P (5?(11) = Xmlr
APP, P (s,(f) = Xm|r) =P (SSZ) = xm|y), is used to cal-
culate the tentative soft decision as described in (9).

Eqn. (23) gives the APP for M-ary modulated symbol. To
obtain the APP for binary code bit z,, 1, we define

; (23)

= 1. The sequence-based symbol

S/Eb) é{Xm'Xm ES:iCnJc :b}7 for k=0, 710g2M7

where b € {—1,+1}, and z, ) is the kth bit of the binary
vector x,, mapped to the symbol s,,. The APP of the bit z,, j
in a system with M-ary modulation during the ith iteration
can be expressed as

P (xs)k = b|r) = Z D (r|s§f)) P(sp)/p(r). (24)
sneSY

Combining (21) and (24) , we can write the LLR of the bit
Tpk AS

Z:(H?XP _Zo%z|pn7j(5n)|2 P(sn)
. Sp €S =1
A (y ) =in T - - (25)
> exp _Z%ﬂpn,j(sn”z P(sn)
spes™H j=1" |

It should be noted that the terms, p, ;(s,), for j > n, are
independent of s,, and they are canceled during the LLR
evaluation. _

The extrinsic information, Lo(xs_)k), which is the soft-
output of the equalizer after the ith iteration, can then be
calculated as

Lo(@(y) = A (b)) = Li(n),

where Lj(xy, 1) is the a priori LLR for the ith iteration.

In the proposed algorithm, the soft-output is calculated by
collecting information from the entire sample sequence, r, as
described in (22) and (25). The sequence-based equalization
is enabled by tentative soft decisions from both previous
iteration, §,(f _1), and the current iteration, §$f ). Errors usually
exist in the tentative decisions, especially during the first few

(26)

iterations. Inevitably, the performance of the algorithm will
be negatively affected by error propagation, where an error
in one tentative decision might lead to errors in subsequent
decisions. The adopted soft decision will reduce the effects of
error propagation, thus leads to better system performance. In
addition, the number of errors in tentative decisions decreases
with the increase of iterations, and this will reduce the perfor-
mance gap between the proposed algorithm with its optimum
counterpart.

C. A Simplified Algorithm

A simplified version of the SISO MMSE-BDFE algorithm
is presented in this section to reduce the computational com-
plexity of the proposed equalizer.

Compared to the classical symbol-based equalization meth-
ods, the proposed sequence-based detection incurs extra com-
plexity during the calculation of the soft output. From (25),
the calculation of each bit LLR requires the evaluation of nM
metrics, |pp k(sn)|?, fork =1,--+ ,n,and s,, € S, while only
M metrics are required by symbol-based algorithms.

The complexity caused by sequence-based soft output cal-
culation can be reduced by utilizing the structure of the
equivalent channel matrix G,. The matrix G,, = U, is
obtained from Cholesky decomposition, and the power of the
matrix is concentrated on the elements that are close to its
main diagonal. Fig. 3(a) showed the power distribution of the
equivalent channel matrix G, for a static channel with channel
impulse response h = [0.227,0.46, 0.688,0.46,0.227] [10]. In
Fig. 3(a), the average power of the [th tap of the equivalent
channel matrix is defined as

1 N—1

_ ) -
pl_ﬁ;|gk,k+zl , forl=0,1,---,N —1.

(27)
It’s apparent from the figure that, for the equivalent channel
matrix G,,, the power of the zero-th tap (main diagonal ele-
ments) is significantly larger than power of the remaining taps
(off diagonal elements). In other words, the equivalent system
is in its minimum phase state. Therefore, we can simplify the
LLR calculation by discarding channel taps with negligible
power without apparently affecting system performance.

The fifth iteration bit error rate (BER) of the above system
at E,/Ny = 11 dB is shown in Fig. 3(b) as a function
of the number of equivalent channel taps, J, used during
detection. From Fig. 3(b), we have three observations. First,
the proposed sequence-based detection (J > 1) outperforms
classical symbol-based detection (J = 1). Second, for this
example, no additional performance gain can be achieved
when J > 4. Third, increasing J from 1 to 2 doesn’t introduce
apparent performance gain. This can be intuitively explained
by the fact that the tentative soft decisions used by the second
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channel tap has low qualities due to the negligence of the third
and fourth channel taps.

Comparing the BER results in Fig. 3(b) with the channel
tap power in Fig. 3(a), we conclude that neglecting equivalent
channel taps with power at least 25 dB below the dominant
tap power renders almost the same performance as considering
all the channel taps. Thus the algorithm can be simplified by
considering only dominant channel taps, without negatively
affecting system performance. The complexities of the orig-
inal method and simplified method are analyzed in the next
subsection.

Another source of computational burden is from the evalua-
tion of the MMSE-BDEFE filters, which has similar complexi-
ties as the symbol-based methods. From (17), the formulation
of each pair of W,, and G,, requires two matrix inversions
and one Cholesky decomposition. Noting the fact that the
calculation of the matrices, W,, and G,,, requires only the
second order a priori information, ®,,, we can reduce the
computational complexity by using a fixed covariance matrix
for all symbols. If ® = diag[o3 ,---,02, ] is used for the
formulation of W and G, then only two matrix inversions and
one Cholesky decomposition are needed for all the symbols
within one block. From (18), we have an equivalent system
with simplified calculations as

r, = W]y — Hs,] = G[s — §,] +e. (28)

In this simplified system representation, fixed matrices, W
and G, are used in combination with symbol dependent
mean vectors, S,. Analysis and simulation show that the
performance loss due to replacing dynamic filters with fixed
filters is negligible for practical system configurations. On the
other hand, as shown in the next subsection, significant amount
of computational efforts are saved by using fixed filters for all
data symbols within one block.

D. Complexity Analysis

The computational complexity of the proposed SISO equal-
izer is analyzed and compared to that of linear MMSE
algorithm. The complexity of the equalizer is mainly incurred
by two sources: the sequence-based calculation of the soft
output, and the formulation of the MMSE-BDFE filters.

From (22), the calculation of each metric, |py k(sn)|?,
requires N — m + 2 complex multiplications. The original
sequence-based method requires nM such metrics for the
evaluation of each bit LLR. Therefore, for a block with IV data
symbols, the number of complex multiplications required in
one iteration is in the order of: M log, M Zﬁ;l S (N —
m 4+ 2) + O(1) = Mlog, MNENRN 4 0(1) =
o MN? log, M).

For the simplified algorithm, only JM metrics are required
for each bit LLR, with J << N. Thus, the complexity
of the simplified LLR calculation is reduced to the order
of: M1og2szj g (N = m + 1) + O(1) =
JM log, N +N(J+2 +O(1) = O(JMN 210g2M)

From (17), the formulatlon of the full complexity MMSE-
BDFE solution requires two matrix inversions and one
Cholesky decomposition for each data symbol. The complex-
ities of matrix inversion and Cholesky decomposition of a

5
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m
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Number of equivlant channel taps used during detection
(b) BER v.s. Number of Taps used in Detection
Fig. 3. Impact of channel tap power on system performance.

N x N matrix are in the order of O(N?). Since there are N
modulation symbols in each block, the computational effort
required for the calculation of MMSE-BDEFE filters is in the
order of N x O(N?3) = O(N*%).

The simplified algorithm uses fixed filters for all the
symbols within one block. Thus the complexity incurred
by MMSE-BDFE solution of the simplified version of the
proposed algorithm is in the order of O(N3).

Based on the analysis above, the full complexity turbo
equalizer requires a computational complexity in the order of
O (CN*+ w , where C' is a constant independent
of M and N. Similarly, the complexity of the simplified
algorithm is in the order of O (CN? + JN21+2M .

Conventional symbol-based method, such as the MMSE
algorithm proposed in [10], requires only M metrics for each
bit LLR evaluation, thus has a complexity in the order of
O(MN log2M) for soft output calculation. In addition, the
formulation of the MMSE algorithm in [9] has a complexity
of O(N?) for a block of N symbols with the help of a fast
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Fig. 4. Extrinsic information exchange of turbo equalization.

recursive matrix inversion method. Thus, the total complex-
ity of MMSE algorithm has a complexity in the order of
(’)lgC’N3 + MS&MQ, with C’ being a constant.

rom the analysis above, it is concluded that the linear
MMSE algorithm in [9] has lower complexity compared to the
full complexity proposed method, and has similar complexity
as the simplified sequence-based equalizer. All of the sub-
optimum algorithms have less computational burden compared
to trellis-based algorithms, whose complexity scales with
M1, with L being channel length.

IV. PERFORMANCE ANALYSIS WITH EXIT CHART

The performance of the proposed SISO equalizer is ana-
lyzed in this section by using the tool of extrinsic information
transfer chart [19], which traces the evolution of mutual infor-
mation between data symbols and its LLR through iterations.

The SISO equalizer/decoder can be modeled as a mutual
information transfer device, i.e., given a priori mutual in-
formation at the input, I7, the equalizer/decoder generates a
new mutual information, Ip, at the output by exploiting the
channel/code structure. This concept is illustrated in Fig. 4.
For a given input mutual information Iy, an output mutual
information I at the output of the equalizer/decoder can be
obtained by following the hybrid simulation and analytical
method described in [10] or [19]. Thus, a mutual information
transfer curve can be obtained for a given SISO equalizer
or SISO decoder. By placing the mutual information transfer
curves of equalizer and decoder in the same figure, the EXIT
chart can illustrate the evolution of mutual information during
various iterations of turbo equalization. Fig. 5 depicts the
EXIT chart of several turbo equalizers with various SISO
equalization algorithms and BCJR convolutional decoder. The
horizontal axis represents the mutual information at the input
of the equalizer, I IE , which is obtained from interleaving
the output of the convolutional decoder, Ig . Similarly, the
output of the equalizer, Ig , and the input of convolutional
decoder, IP, are represented on the vertical axis of the figure.
The results obtained in Fig. 5 are obtained from the static
channel described in Fig. 3. A convolutional code with rate
R =1/2 is used in the analysis. The generator polynomial of
the convolutional code in octal notation is G = [23, 35]s.

In the EXIT chart shown in Fig. 5, the iteration process
between equalizer and decoder can be visualized by using
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a trajectory trace following Ig — I ID and Ig — I }E .
The trajectory trace of the system with BCJR equalizer is
drawn in the figure as an example. The vertical trace and
horizontal trace represent the procedure of equalization and
decoding, respectively. It can be seen from the figure that the
mutual information improves by following the guide of the
“tunnel” between the transfer curves of the equalizer and the
decoder. The trajectory trace shows that the BCJR equalizer
can converge in two iterations under the assumption of ideal
interleaver and infinite block length. It might take more
iterations to converge under practical system configuration.
As shown in Fig. 4, the proposed equalizer relies on both
soft a priori input and soft decisions. Since the reliability of
soft decisions changes with the evolution of iterations, the
exact mutual information transfer curve of the proposed algo-
rithm cannot be readily obtained with the method described in
[19], which considers only soft a priori input. Therefore, the
mutual information transfer curve of the proposed algorithm
is illustrated under two extreme conditions: with perfect a
priori soft decisions :?:7(;;1) = xp (upper bound), and

with zero a priori soft decision if:};l) = 0 (lower bound).
During the first iteration, where no a priori information is
available, the system performance follows the lower bound;
after several iterations, the a priori soft decisions become
more reliable, and the upper bound gives a better indication
of the mutual information transfer. The actual transfer curve
of the proposed algorithm is in the middle between these
two extreme conditions. Comparing the transfer curves of
the proposed algorithm with other algorithms, we have the
following observations.

First, the transfer curves of the simplified version of the
proposed algorithm coincide with their full complexity coun-
terparts. This indicates that the simplified algorithm has almost
the same performance as the full complexity algorithm.

Second, the proposed algorithm converges faster than other
algorithms. It can be seen from the trajectory trace that
the convergence rate of iterative equalization is determined
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Fig. 6. BER performance of turbo equalization in BPSK system.

by the width of the “tunnel” between equalizer curve and
decoder curve. It’s clear from the figure that the “tunnel” of
the proposed algorithm is wider than other low complexity
algorithms, therefore, it can reach its optimum performance
point with fewer iterations. This will further reduce the overall
computational complexity of turbo equalization.

Third, after convergence, the proposed algorithm and the
linear MMSE algorithm [9] can achieve almost the same
performance as the BCJR equalizer. However, the proposed
algorithm can achieve the optimum performance with the least
complexity due to its fast converging property.

V. SIMULATION RESULTS

BER results obtained from simulations under practical sys-
tem configurations are presented in this section to verify the
performance of the proposed low complexity SISO MMSE-
BDEFE algorithm. The transmitted data is divided into blocks
with length 2048-bit. One block is further cut into sub-
blocks with length 128-bit. The SISO MIMO-BDEFE is per-
formed over sub-blocks, while BCJR convolutional decoding
is performed over an entire block. Convolutional code with
generator polynomial G' = [23,57]g is used in the simulation.
To illustrate the performance of the system under practical
system, the frequency selective fading is generated based on
the Typical Urban profile [20]. The channel is constant within
one block, and it varies from block to block. Each realization
of the channel is normalized to unit energy.

Fig. 6 compares the performance of the proposed algorithm
with that of the linear SISO MMSE algorithm in [9]. The
simulation is performed for BPSK modulated systems. It’s
clear from the figure that the proposed non-linear MMSE-
BDFE algorithm consistently outperforms the linear MMSE
algorithm for all iterations. The performance gain is mainly
contributed by the sub-optimum sequence-based detection.
The BER obtained from the BCJR equalizer is also shown
in this figure as a reference. During the fifth iteration, the
performance of the proposed algorithm is almost the same
as that of the BCJR equalizer. This result agrees with the
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Fig. 7. BER performance of turbo equalization in 8PSK system.

analysis from EXIT chart. With the increase of iterations, the
a priori soft decisions becomes more and more reliable, and
this narrows down the performance gap between the proposed
algorithm and trellis-based algorithm.

The performances of 8PSK modulated systems with various
low complexity equalization algorithms are shown in Fig. 7.
Again, the non-linear MMSE-BDFE algorithms outperforms
the linear MMSE algorithm during the iterations considered.
At the BER level of 3 x 1073, the fifth iteration performance
of the MMSE-BDFE algorithm is 1.3 dB better than that of
the MMSE algorithm. In addition, the proposed algorithm
converges faster than the linear MMSE algorithm: the second
iteration performance of the proposed algorithm is better
than the fifth iteration performance of the MMSE algorithm.
Based on the EXIT chart analysis, the MMSE algorithm can
eventually achieve the same performance as the proposed
algorithm, but with much more iterations. To illustrate the
impact of soft decision, the fifth iteration BER performance
of the proposed algorithm with hard decision feedback is also
shown in the figure. At the BER level of 1073, using hard
decision feedback results in a performance loss of 0.8 dB.

The performance of the simplified MMSE-BDEFE algorithm
with fixed filters and time varying mean vectors is also shown
in this figure. From the figure, the simplified version of
the proposed algorithm has almost the same performance as
the full complexity MMSE-BDEFE algorithm. As analyzed in
Section III-D, the simplified algorithm has similar complexity
as the linear MMSE algorithm. Thus, the proposed simplified
non-linear equalizer can achiever better performance with
similar complexity as the linear MMSE algorithm.

VI. CONCLUSIONS

A low complexity SISO MMSE-BDFE algorithm for turbo
equalization was presented in this paper. With the help of
both soft a priori information and soft decision of the data
symbols, the output of the equalizer is obtained by evaluating
an approximation of the sequence-based APP of the data
symbols. The accuracy of the APP approximation obtained
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in the proposed algorithm improves with the evolution of
iterations, and this reduces the performance gap between the
proposed algorithm and trellis-based algorithms. Performance
analysis revealed that the performance improvement of the
proposed algorithm over linear MMSE algorithm is achieved
at the cost of complexity. To reduce the computational com-
plexity, a simplified version of the SISO MMSE-BDFE was
presented. The simplified algorithm has similar complexity as
linear MMSE algorithm, and it can achieve a performance
similar to that of trellis-based algorithms.
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