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Abstract— Accurate system planning and performance eval-
uation requires knowledge of the joint impact of scheduling,
interference, and fading. However, current analyses either require
costly numerical simulations or make simplifying assumptions
that limit the applicability of the results. In this paper, we
derive analytical expressions for the spectral efficiency of cellular
systems that use either the channel-unaware but fair round robin
scheduler or the greedy, channel-aware but unfair maximum
signal to interference ratio scheduler. As is the case in real
deployments, non-identical co-channel interference at each user,
both Rayleigh fading and lognormal shadowing, and limited
modulation constellation sizes are accounted for in the analysis.
We show that using a simple moment generating function-based
lognormal approximation technique and an accurate Gaussian-Q
function approximation leads to results that match simulations
well. These results are more accurate than erstwhile results that
instead used the moment-matching Fenton-Wilkinson approxi-
mation method and bounds on the Q function. The spectral
efficiency of cellular systems is strongly influenced by the channel
scheduler and the small constellation size that is typically used
in third generation cellular systems.

I. INTRODUCTION

Next generation cellular communication systems strive to
achieve higher spectral efficiencies and deliver higher data
rates to users. This needs to be done in the presence of effects
such as large-scale fading, which arises due to shadowing, and
small-scale fading, which arises due to multipath components,
and in an interference-limited environment in which aggressive
frequency reuse leads to severe co-channel interference (CCI)
from neighboring cells [1]. To achieve the desired high spectral
efficiencies, these systems employ advanced techniques such
as link adaptation and channel-aware multi-user scheduling.
This paper presents a general analysis of the spectral efficiency
achievable by these systems, which factors in the interactions
between all the above mentioned effects.

Due to its importance in system planning and optimization,
the problem of characterizing the spectral efficiency of a cellu-
lar system with schedulers has received considerable attention
in the literature. The presence of CCI, the competition for
radio resources at the scheduler, and the combined effect of
fading and shadowing make a system-level (multi-user multi-
cell) analysis quite complicated. Given the complexity of
analysis, most performance evaluations have been simulation
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studies [2]–[4], with many of these using very standard-
specific models. Analytical spectral efficiency expressions
have been obtained as well in the literature but use certain
simplifications of the underlying model [5], [6] that limit the
accuracy or the applicability of the analysis.

In [5], an analytical framework is developed to quantify
the area spectral efficiency of interference-limited cellular
systems in the presence of both Rayleigh fading and lognormal
shadowing. However, it assumes that the mean power of all
the interferers is identical, a situation that does not occur
in practical systems. Consequently, the results derived are
performance bounds that assume that all users are at the best
case or worst case locations for interference. The bounds turn
out to be quite loose for small reuse distances, at which next
generation systems will typically operate. Such an approach
also precludes the inclusion of second-tier interference in the
analysis. While smaller than first-tier interference, second-tier
interference is not negligible. Other related papers are [8] and
[9], both of which assume identically distributed interferers
and do not consider shadowing. It is also important to note that
the results in [5], [8], [9] are only applicable to systems with
channel-unaware round robin (RR) schedulers. While [6] does
analyze the performance of different schedulers and accounts
for multi-tier interference, it makes the simplifying assumption
that the throughput equals the signal to interference ratio (SIR)
at the receiver. This makes the results applicable only to
systems in which the SIR at each mobile is very small. The
throughput of different schedulers is also analyzed in [7], but
only for a CCI-free single-cell system.

This paper derives general analytical expressions for the
spectral efficiency of a cellular system, which do not suffer
from any of the above restrictions. We allow for the fact that
the interference at each user comes from non-identical co-
channel interferers, and that all the links undergo both small-
scale Rayleigh fading and large-scale lognormal shadowing.
The spectral efficiency of the fair but spectrally inefficient
RR scheduler and the unfair but spectrally efficient Max-SIR
(signal to interference ratio) scheduler, which schedules to the
user with the best instantaneous channel state, is analyzed.
The results also serve as lower and upper bounds on the
performance of a proportional-fair scheduler [3], which trades
off system throughput for fairness. The paper generalizes
the analysis in [10], which presented shadowing-conditioned
spectral efficiency results, i.e., it only averaged over short-term
fading. As we shall see, incorporating shadowing significantly
changes the analysis. For example, the differential form of the

1-4244-0353-7/07/$25.00 ©2007 IEEE 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

5218



probability distribution function in [10, Lemma 2] that enabled
a closed-form analysis is no longer possible.

Our analysis also brings out the significant detrimental
effect that a maximum transmission rate limit has on the
throughput advantage of Max-SIR schedulers. The maximum
transmission rates occur due to small modulation constella-
tions employed in the cellular systems for reasons related to
mobile station (MS) complexity and reference signal overhead.
For example, 16-QAM is the largest modulation alphabet
in the third generation high speed downlink packet access
(HSDPA) system, and has a maximum rate of 4 bits/symbol.

The paper is organized as follows. Section II sets up the
cellular system model. In Sec. III, statistical properties of the
SIR are analyzed, and are used to derive the spectral efficiency
of the different schedulers in Sec. IV. Numerical examples in
Sec. V are followed by our conclusions in Sec. VI.

II. SYSTEM MODEL

Consider a cellular system with N users per cell and
multiple cells. In the downlink, each user receives CCI from
M neighboring base stations. The received signal at the nth
user can be modeled as:

rn = hn0xn0 +
M∑

m=1

hnmxnm + zn, (1)

where xn0 is the desired signal with unit power, xnm is the
mth interfering signal, and zn is additive white Gaussian
noise. The channel coefficient, hnm, represents the instan-
taneous complex baseband gain of the channel between the
nth user and the mth base station (BS). It can be written as
hnm =

√
αnmgnm, where αnm includes the effect of pathloss,

shadowing, and sectorization, and the Rayleigh-fading term
gnm is a zero-mean, unit-variance complex Gaussian random
variable.

The number of interferers, M , depends on the geometric
layout of the cellular system and sectorization. For example,
for the hexagonal layout shown in Fig. 1, when only first-
tier interferers are considered, we have M = 6 without
sectorization, M = 2 for 3 sectors per cell, and M = 1 for 6
sectors per cell [11]. When the second-tier interferers are also
considered, the corresponding values are M = 18, M = 7,
and M = 4.1

The probability density function (pdf) of lognormal shad-
owing is given by

fαnm
(x)=

ξ√
2πσnmx

exp
[
− (ξ loge x− µnm)2

2σ2
nm

]
, (x ≥ 0).

(2)
where µnm and σ2

nm are the mean and variance of the Gaus-
sian random variable (RV), 10 log10 αnm, and ξ = 10/ loge 10.

Specifically, µnm = Pm −L0−10p log10(dnm/d0)−A(θ),
where Pm is the transmission power (in dBW) of the mth BS,
L0 is the pathloss (in dB) at a reference distance d0 from the

1These values of M arise when the interference from other sectors is
neglected. This is justifiable because the antenna pattern attenuates adjacent
sector interference by 20 dB or more.

BS, dmn is the distance of the nth MS from the mth BS, p
is the pathloss exponent, A(θ) is the antenna gain (in dB) of
the BS, and θ is the angle between the direction of interest
and the boresight of the antenna. For example, in [17], A(θ)
is specified as

A(θ) = −min

[
12
(
θ

θ0

)2

, A0

]
,−180o ≤ θ ≤ 180o, (3)

where θ0 = 70o and A0 = 20 dB for a 3-sector cell, and
θ0 = 35o and A0 = 23 dB for a 6-sector cell. For a 1-sector
cell, A(θ) = 0 dB. It is clear from Fig. 1 that the BSs are at
different distances from an MS. Therefore, this paper assumes
that hnm are independent, but not identically, distributed.

As in [2], [5], [8], [9], we consider a highly spectrally
efficient interference-limited scenario in which the noise com-
ponent is negligible compared to CCI. Neglecting the noise
also makes the analysis tractable. The instantaneous SIR, γn,
of the nth user is

γn =
Sn∑M

m=1 Inm

, (4)

where Sn = αn0|gn0|2 is the desired signal component power,
and Inm = αnm|gnm|2 is the CCI from the mth BS.

Spectral efficiency captures the highest data throughput per
unit bandwidth achievable by the entire cellular system under
the limitations imposed by the system model assumptions.
We therefore use the Shannon capacity formula to measure
throughput [5], as it is the maximum throughput the channel
can reliably support. This also models the case where capacity-
achieving error-free codes are used and the transmitter adapts
its transmission rates on a continuous scale. The impact of
a limited modulation constellation is modeled by means of a
cap, Cmax = log2(T ), on the achievable throughput per unit
bandwidth:

C(γn) =
{

log2(1 + γn), γn ≤ γ
T

Cmax, γn > γ
T

, (5)

where T is the maximum modulation constellation size al-
lowed in the system, and Cmax = log2(1 + γ

T
). (Without a

constellation size constraint, we have Cmax = ∞.)
The channel is time-varying. In the spectral efficiency

analysis, it is assumed that the schedulers operate at a rate
fast enough to adapt to the channel variations. As a result, the
instantaneous spectral efficiency C(γn) varies with time. The
average spectral efficiency of the nth user is then

Cn =
∫ ∞

0

C(γ)fγn
(γ)dγ, (6)

where fγn
(γ) is the pdf of the SIR γn.

III. STATISTICAL PROPERTIES OF SIR

In this section, the statistical properties of the SIR, γn, at
the receiver of user n are first analyzed. This will facilitate
the spectral efficiency analysis that follows.
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A. Statistics of Signal Component

Due to the combined effects of pathloss, lognormal shad-
owing, and Rayleigh fading, the received signal power, Sn,
follows a composite Rayleigh-lognormal (Suzuki) distribution.
The pdf of Sn can be expressed in an integral form as

f
Sn

(x) =
∫ ∞

0

1
y

exp
(
−x
y

)
ξ√

2πσn0y

× exp

[
− (ξ loge y − µn0)

2

2σ2
n0

]
dy, (x ≥ 0), (7)

where µn0 and σ2
n0 are the dB moments of the lognormal RV

αn0.
No closed-form formula is available for this composite

Rayleigh-lognormal pdf. However, a composite Rayleigh-
lognormal RV can be accurately approximated by a new
lognormal RV, S̃n ≈ Sn. The dB moments, µ

S̃n
and σ2

S̃n
,

of S̃n are given by [11, (2.188)]

µ
S̃n

= ξ · ψ(1) + µn0, (8a)

σ2

S̃n
= ξ2 · ζ(2, 1) + σ2

n0, (8b)

where ψ(·) is the Euler psi function, and ζ(·, ·) is Riemann’s
zeta function.

B. Statistics of Sum of Interference Components

The interference power, Inm, from the mth BS is also
Suzuki distributed (with its pdf given by (7)). Its dB mean
and variance are µnm and σ2

nm. To evaluate the statistics of
the SIR, we need to evaluate the statistics of the sum of M
non-identically distributed interference powers,

∑M
m=1 Inm.

It is shown in [12], [13] that a single lognormal RV, Ĩn,
can accurately approximate the distribution of the sum of
M non-identically distributed composite Rayleigh-lognormal
RVs, i.e., Ĩn ≈ ∑M

m=1 Inm. A similar lognormal approxi-
mation of the interference power sum was also used in [5],
where the approximation was performed in two steps. First,
each Suzuki interference component, Inm, is approximated by
a lognormal RV, Ĩnm. Second, a new lognormal RV, Ĩn, is used
to approximate the lognormal sum,

∑M
m=1 Ĩnm, by employing

the moment-matching Fenton-Wilkinson (F-W) method [14].
However, this leads to inaccuracies as the F-W method is poor
in approximating the head portion (small values of Ĩn) of the
sum pdf [12]. This is a problem in an SIR analysis such as
ours because Ĩn is in the denominator of the SIR expression,
and its small values do matter. Another source of inaccuracy
is that the approximation errors of the two steps accumulate.

We overcome these problems by using the novel, yet simple,
moment generating function (MGF)-based method [12], which
approximates the sum of non-identical Suzuki RVs by a
single lognormal RV directly in one step. More importantly,
the method provides the parametric flexibility to handle the
inevitable trade-off that needs to be made in approximating
different regions of the sum pdf. In Sec. V, we compare the
accuracy of the two methods and show that the MGF-based
method leads to the most accurate results.

In the MGF-based method, the dB moments, µ
Ĩn

and σ2
Ĩn

,

of Ĩn are determined by solving the following system of two
equations [12]

K∑
k=1

wk√
π

exp

[
−si exp

(√
2σ

Ĩn
ak + µ

Ĩn

ξ

)]

=
M∏

m=1

ΨInm
(si), for i = 1 and 2. (9)

The left-hand side of the equation is the Gauss-Hermite
representation of the MGF of the approximating lognormal
RV Ĩn, with K being the Hermite integration order, and µ

Ĩn

and σ
Ĩn

are the unknowns to be solved for. The weights,
wk, and the abscissas, ak, are tabulated in [15, Tbl. 25.10].
The right-hand side function, ΨInm

(s), is the Gauss-Hermite
approximation of the Suzuki MGF, and is given by

ΨInm
(s)=

K∑
k=1

wk√
π

[
1+s exp

(√
2σnmak + µnm

ξ

)]−1

,

(10)
where µnm and σnm are the dB mean and dB standard
deviation of the lognormal RV αnm, and are known a priori.
ΨInm

(s) only needs to be calculated twice – at s1 and s2.
The above system of two non-linear equations can be readily
solved numerically using standard functions such as fsolve
in Matlab and NSolve in Mathematica. K = 12 is sufficient
to accurately determine µ

Ĩn
and σ2

Ĩn
.

In the SIR analysis, s1 = 0.2 and s2 = 1.0 are chosen
to give more emphasis to the head portion of the sum pdf
[12] because the SIR, which has Ĩn on the denominator of its
expression, is more sensitive to small values of Ĩn.

C. SIR Statistics

With the approximations described above, both the signal
power, Sn, and the total interference power,

∑M
m=1 Inm,

are approximated by lognormal RVs, S̃n and Ĩn, that are
independent of each other. Thus, the SIR is now

γ̃n =
S̃n

Ĩn
, (11)

which is also a lognormal RV with parameters

µγ̃n
= µ

S̃n
− µ

Ĩn
, (12a)

σ2
γ̃n

= σ2

S̃n
+ σ2

Ĩn
. (12b)

Here, µ
S̃n

and σ2
S̃n

are given by (8), and µ
Ĩn

and σ2
Ĩn

can be
obtained by solving (9).

The CDF of the lognormally distributed SIR, γ̃n, can then
be written in closed-form as

Fγ̃n
(γ) = 1 −Q

(
10 log10 γ − µγ̃n

σγ̃n

)
, (13)

where Q(x) = 1√
2π

∫ +∞
x

exp(−y2

2 )dy is the Gaussian-Q
function.
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IV. SPECTRAL EFFICIENCY ANALYSIS

We now analytically evaluate the average spectral efficien-
cies of the RR and Max-SIR schedulers. The analysis assumes
a full buffer traffic model, in which all users always have data
to be transmitted to.

A. Round Robin Scheduler

In a system with the RR scheduler, a user once served by the
BS will not be served again until all the other users have been
served exactly once. The RR scheduler has the same spectral
efficiency as a random scheduler, which schedules all users
with the same probability without taking the users’ channel
states into account. Therefore, the average spectral efficiency,
CRR , of the RR scheduler can be shown to be simply the
average of all the users’ channel-averaged spectral efficiencies,
and is given by

CRR =
1
N

N∑
n=1

Cn, (14)

where N is the number of active users in the system, and Cn

is the average spectral efficiency of the nth user. Note that
an equation similar to (14) was in [5], [8], [9] to calculate
the average spectral efficiency. Consequently, their results only
apply to the RR scheduler.

The average spectral efficiency of the nth user is obtained
by substituting (5) into (6):

Cn = log2 e

∫ γ
T

0

1
1 + γ

[1 − Fγn
(γ)] dγ, (15)

where γ
T

is the SIR threshold related to the modulation
constellation size limit, as described in (5). Combining (13)–
(15) leads to the following formula for the average spectral
efficiency of a system with the RR scheduler:

CRR =
log2 e

N

∫ γ
T

0

1
1 + γ

N∑
n=1

Q

(
ξ loge γ − µγ̃n

σγ̃n

)
dγ. (16)

Since the Gaussian-Q function is defined in the form of an
integral, the evaluation of the average spectral efficiency given
in (16) effectively requires a two-fold integration. This can be
simplified by using the following very accurate approximation
of the Gaussian-Q function [16]

Q̂(x) =
exp

(−x2/2
)

1.64x+
√

0.76x2 + 4
, for x ≥ 0. (17)

The relative variation,
∣∣∣Q̂(x) −Q(x)

∣∣∣ /Q(x), is smaller than

0.3% for x > 0. Using the relationship Q(x) = 1−Q(−x), for
x < 0, we can simplify the representation of CRR by combining
(16) and (17). The final expression for the spectral efficiency
is given in (18) in terms of an easily computable single finite
integral with only elementary functions in its integrand.

In [5], the numerical complexity was avoided by using an
upper bound and a lower bound of the function log2(1 +
γ). The bounds are loose for small reuse distances. The
approximation of log2(1 + γ) ≈ γ was adopted in [6] to
simplify the spectral efficiency analysis. This approximation

only applies to smaller value of γ. Using the Gaussian-
Q function approximation of (17) instead leads to a more
accurate characterization of the SIR over a wider range of
its values, while also simplifying the numerical computation.

B. Max-SIR Scheduler

Compared to the RR scheduler, the Max-SIR scheduler
improves throughput by always serving the user with the
highest SIR. As mentioned, these gains come at the expense
of fairness and also an increased feedback overhead. Unlike
the RR scheduler, the Max-SIR scheduler requires the BS to
know the channel gains of all the MSs.

Let γmax = max {γ̃1, γ̃2, · · · , γ̃N} denote the maximum
SIR among the N users at any instant. The average spectral
efficiency of a system with the Max-SIR scheduler can then
be written as [c.f. (15)]

CMSIR = log2 e

∫ γ
T

0

1
1 + γ

[1 − Fγmax(γ)] dγ, (19)

where Fγmax(γ) is the CDF of the maximum SIR, γmax. From
(13), Fγmax(γ) is given by

Fγmax(γ) = P (γ̃1 < γ, γ̃2 < γ, · · · , γ̃N < γ),

=
N∏

n=1

[
1 −Q

(
ξ loge γ − µγ̃n

σγ̃n

)]
, (20)

where the second equality follows because the SIRs {γ̃n}N
n=1

are independent.
From (19) and (20), the average spectral efficiency of the

Max-SIR scheduler after averaging over both Rayleigh fading
and lognormal shadowing is

CMSIR = log2(e)

×
∫ γ

T

0

1
1 + γ

(
1−

N∏
n=1

[
1−Q

(
ξ loge γ − µγ̃n

σγ̃n

)])
dγ. (21)

As before, the average spectral efficiency expression can be
further simplified as before by using (17). The details are
omitted due to space constraints.

The spectral efficiency expressions given in (18) and (21)
are also applicable to systems operating in an environment
with only lognormal shadowing and no (or minimal) Rayleigh
fading. This can occur in the presence of a line-of-sight
connection, or in transceivers that use micro-diversity (e.g.,
antenna diversity or frequency diversity) to eliminate small-
scale fading. In such cases, the only change in the average
spectral efficiency evaluation is the re-computation of the dB
moments, µγ̃n

and σ2
γ̃n

, of the SIR.

V. NUMERICAL EXAMPLES

A representative hexagonal cellular layout, shown in Fig. 1,
with a reuse factor of 1 and with up to two tiers of interfering
BSs is used in the results below. The pathloss exponent
is assumed to be 3.7. Unless otherwise mentioned, the dB
standard deviation of all lognormal RVs is σ = 8 and the
number of sectors per cell is one.
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C̃RR =
log2 e

N

N∑
n=1

loge

(
1 + eµγ̃n /ξ

)
−
∫ γ

T

0

σγ̃n
exp

(
− |ξ loge γ − µγ̃n

|2 /2σ2
γ̃n

)
/(1 + γ)

1.64 |ξ loge γ − µγ̃n
| +
√

0.76 |ξ loge γ − µγ̃n
|2 + 4σ2

γ̃n

dγ

 . (18)

BS 0
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10
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18

6

7

MS

Fig. 1. Hexagonal layout of a 19-cell cellular system.

We first study the case where there is no limit on the
modulation constellation. Figure 2 plots the average spectral
efficiency per cell of a system with 10 users per cell when
only the interference from the first-tier interfering BSs is
considered. To ensure a fair comparison between the RR and
Max-SIR schedulers, all the users are distributed on a circle
centered at the serving BS.2 Note, however, that the analysis
presented in this paper can handle arbitrary user locations.
It can be seen from Fig. 2 that the analytical results agree
with the simulation results very well for both the schedulers.
This results demonstrate the accuracy of using the MGF-
based Suzuki sum approximation and the Gaussian-Q function
approximation in the analysis. Also plotted are the analyti-
cal results obtained with the F-W lognormal approximation
method. These deviate from the simulation results due to the
inaccuracy of the F-W method.

The average spectral efficiencies of the Max-SIR and RR
schedulers are plotted in Fig. 3 as a function of the number of
users per cell, N . Multiple-tier interference is now considered.
All the users are at a distance of a half cell radius from the
serving BS. As expected, the spectral efficiency of the RR
scheduler is independent of N , whereas the spectral efficiency
of the Max-SIR scheduler increases monotonically with N
– thanks to multi-user diversity. Neglecting the second-tier
interferers overestimates the spectral efficiency by 20% for
a RR scheduler, and by 8% for a Max-SIR scheduler.3

Figure 4 illustrates the effects of cell sectorization and σ

2This ensures that all users still get served for the same time, on average,
even with the Max-SIR scheduler.

3Intuitively, second-tier interference will matter less as the noise power,
which is neglected in our analysis, increases relative to interference power.

on the average spectral efficiency of the Max-SIR scheduler.
Ten users per cell are considered, with all users being on a
circle with a radius half the cell radius. The antenna pattern
in (3) is used. It can be seen that sectorization benefits system
performance by reducing the number of co-channel interferers.
Performance improves by approximately 87% and 33% when
the number of sectors increases from 1 to 3, and from 3 to 6,
respectively. In addition, for the Max-SIR scheduler, a larger
σ leads to a higher spectral efficiency. This is intuitive, as
a larger variance of the channel gain increases the possible
multiuser diversity gain. Note that the simulation results and
the analytical results agree very well in Figs. 3 and 4.

The impact of the modulation constellation size limit on the
average spectral efficiency is illustrated in Fig. 5, for both the
schedulers. As before, the number of users per cell is N = 10,
with all the users placed at the same distance from BS. It is
interesting to note that while the Max-SIR scheduler always
outperforms the RR scheduler, the modulation constellation
size limit undercuts its throughput advantage. Again, this is
intuitive, as the user with the best SIR has a very high in-
stantaneous capacity, which it cannot exploit if the modulation
alphabet size is restricted. This is especially so when the users
are closer to the serving BS. At the cell edge, the impact of the
constellation size limit is limited due to greater interference.

VI. CONCLUSIONS

We analyzed the system-level spectral efficiency of
interference-limited cellular systems that use either the round
robin or the Max-SIR schedulers. The analysis is sufficiently
general to include the combined effects of Rayleigh fad-
ing, lognormal shadowing, channel-aware scheduling, lim-
ited modulation constellation, and non-identical co-channel
interference. It avoids the simplifying assumption about the
placement of interferers and includes the effect of multiple
tiers of interferers. The use of a novel MGF-based lognormal
approximation method and an accurate approximation of the
Gaussian-Q function eliminated the remaining discrepancies
between analysis and simulation results that were encoun-
tered in the literature. The modulation constellation size limit
diminishes the throughput gains of the Max-SIR scheduler,
especially when the users are close to the serving base
station. Multiple tier interference has a greater impact on the
performance of the RR scheduler than the Max-SIR scheduler.
The analytical results in this paper thus provide a benchmark
against which the results of system-level simulators can be
compared. Future work includes extending the analysis to
proportional fair schedulers.
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[11] G. L. Stüber, Principles of Mobile Communications. Kluwer Academic
Publishers, 1996.

[12] N. B. Mehta, A. F. Molisch, J. Wu, and J. Zhang, “Approximating the
sum of correlated lognormal or lognormal-rice random variables,” in Proc.
IEEE Intern. Conf. Commun., pp. 1605–1610, Jun. 2006.

[13] F. Graziosi and F. Santucci, “On SIR fade statistics in Rayleigh-
lognormal channels,” in Proc. IEEE Intern. Conf. Commun., vol. 3, pp.
1352–1357, May 2002.

[14] L. F. Fenton, “The sum of lognormal probability distributions in scatter
transmission systems,” IRE Trans. Commun. Syst., vol. CS-8, pp. 57–67,
1960.

[15] M. Abramowitz and I. Stegun, Handbook of mathematical functions with
formulas, graphs, and mathematical tables. Dover, 9th ed., 1972.

[16] N. Kingsbury, “Approximation formulae for the Gaussian error integral,
Q(x),” The connexions project, http://cnx.org/content/m11067/latest, June
2005.

[17] “Spatial channel model for multiple input multiple output (MIMO)
simulations,” Tech. Rep. 25.996, 3rd Generation Partnership Project
(3GPP).

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Number of users per cell N

S
pe

ct
ra

l e
ffi

ci
en

cy
 (

bp
s/

H
z)

Max−SIR 1 tier CCI (analytical)
Max−SIR 1 tier CCI (simulation)
RR  1 tier CCI (analytical)
RR 1 tier CCI (simulation)
Max−SIR 2 tiers CCI(analytical)
Max−SIR 2 tiers CCI (simulation)
RR 2 tiers CCI (analytical)
RR 2 tiers CCI (simulation)

Fig. 3. Spectral efficiency of the RR and Max-SIR schedulers for different
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