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Abstract— The theoretical error performance of double space
time transmit diversity (DSTTD) system is analyzed in this paper.
By employing both spatial multiplexing and transmit diversity in
one system, DSTTD provides practical tradeoff between system
spectral efficiency and diversity gain. We derive exact analytical
expressions to describe the symbol error rate for DSTTD systems.
The effects of both diversity gain and antenna interference intro-
duced by spatial multiplexing are quantified in the results. In ad-
dition, the performance of DSTTD system with successive inter-
ference cancellation is also investigated. Simulation results are in
excellent agreement with the theoretical results obtained in this pa-
per.

I. INTRODUCTION

The next generation wireless communication system is re-
quired to provide high quality voice service as well as broad-
band data services. To achieve this goal, multiple-input
multiple-output (MIMO) system with multiple antennas at both
transmitter and receiver are adopted to utilize the spatial domain
of the wireless communication system.

The spatial dimension of MIMO system can be explored in
two different ways, spatial multiplexing [1] or transmit diver-
sity [2]-[4]. In system with spatial multiplexing, different data
streams are sent out by different transmit antennas simultane-
ously to improve the overall system throughput. On the con-
trary, transmit diversity system has one data stream spatially en-
coded across all transmission antennas to achieve spatial fading
diversity. Spatial multiplexing and transmit diversity feature the
fundamental trade-off between spectral efficiency and diversity
gain in wireless communication systems [5], [6]. Spatial multi-
plexing improves system spectral efficiency at the cost of diver-
sity gain, while diversity gain is achieved in transmit diversity
system by trading off spectral efficiency.

Double space time transmit diversity (DSTTD) is a hybrid
scheme utilizing the techniques of both spatial multiplexing and
transmit diversity in one system [7]. DSTTD system has four
transmit antennas divided into two 2-antenna groups, with the
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two antennas in each group associated with an orthogonal space
time transmit diversity (STTD) encoder. Spatial multiplexing
are employed across groups, i.e., different data streams are sent
out by different groups. DSTTD technique provides a practical
trade-off point between spatial multiplexing and transmit diver-
sity. The error performance of DSTTD system was studied with
simulations [7], [8]. However, no analytical results are avail-
able in the literature to describe the theoretical error probability
of DSTTD system.

In this paper, we derive exact analytical error probability ex-
pressions for linearly modulated DSTTD systems with inde-
pendent identically distributed (i.i.d.) Rayleigh fading chan-
nels. The difficulty in DSTTD system performance analysis
mainly arises from the interference among the spatially multi-
plexed transmission antennas. We tackle this problem by ana-
lyzing the eigen-structure of the interference correlation matrix,
which leads to closed-form expressions of the moment generat-
ing function (MGF) of the post-detection signal to interference
plus noise ratio (SINR) at the receiver. The statistical proper-
ties of the post-detection SINR are used to facilitate the system
error probability analysis. The effects of both spatial diversity
and inter-group interference are taken into account during the
performance analysis.

Successive interference cancellation (SIC) can be employed
at DSTTD receiver to improve the overall system performance
at the cost of system complexity [7]. The theoretical perfor-
mance of DSTTD system with SIC is also investigated in this
paper, and the results are compared to DSTTD systems without
SIC to demonstrate the impact of SIC on system performance.

The rest of the paper is organized as follows. Section II de-
scribes the model and operation of DSTTD system. In Section
III, the theoretical error performances of DSTTD system with
and without SIC are derived by analyzing the statistical proper-
ties of the post-detection SINR. Numerical examples are given
in Section IV to validate the analytical results, and Section V
concludes the paper.

II. SYSTEM MODEL

The block diagram of a DSTTD system with Nt = 4 trans-
mission antennas and Nr ≥ 2 receive antennas is shown in Fig.
1. The input information symbols are demultiplexed into two
data streams, each stream is encoded by an orthogonal STTD
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Fig. 1. The block diagram of a DSTTD system.

encoder. The output of the two orthogonal STTD encoders at
two consecutive symbol periods t1 and t2 can be represented by
a size 4 × 2 matrix as

C = {cij}4×2 =
[

x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3

]T
∈ C4×2 (1)

where (·)∗ denotes the operation of complex conjugate, (·)T
represents matrix transpose, and xi is anM -ary modulated sym-
bol with power Es. For each element cij in the matrix C, the
column index j corresponds to the time instant tj , for j = 1 or
2, whereas the symbol on the ith row of C is going to be sent
out by the ith transmission antenna, with i ∈ {1, 2, 3, 4}.

In the channel, the transmitted signal is corrupted by both
multipath fading and additive noise. To maintain the orthogo-
nality of the STTD encoding scheme, the channel is assumed to
be varying slowly enough that the fading remains constant for
two consecutive symbol periods [2]. Let hnm denote the fading
coefficient between the mth transmission antenna and the nth
receive antenna, then the signals collected by the nth receive
antenna at time instant tj can be written as

rnj =
[
hn1 hn2 hn3 hn4

] · cj + znj , for j = 1, 2. (2)

where rnj is the received signal of the nth receive antenna at
time instant tj , znj is the corresponding additive white Gaussian
noise (AWGN) component with variance N0, and cj is the jth
column of the encoded data matrix C. With simple algebraic
manipulation of (1) and (2), we have

[
rn1

r∗n2

]
=

[
hn1 hn2 hn3 hn4

h∗n2 −h∗n1 h∗n4 −h∗n3

] 

x1

x2

x3

x4


 +

[
zn1

z∗n2

]
,

or in matrix format

rn = Hn · x + zn, for n = 1, 2, · · · , Nr. (3)

Stacking up the Nr receive vectors rn leads to the input-
output relationship of the system as

r = H · x + z, (4)

where

r =
[

rT1 rT2 · · · rT
Nr

]
∈ C(2Nr)×1, (5a)

H =
[

HT
1 HT

2 · · · HT
Nr

]T
∈ C(2Nr)×4, (5b)

z =
[

zT1 zT2 · · · zT
Nr

]T
∈ C(2Nr)×1. (5c)

with rn ∈ C2×1, Hn ∈ C2×4, and zn ∈ C2×1 defined in (3).
From (4), the system is equivalently represented by a spatially

multiplexed MIMO system with four transmission antennas and
2Nr receive antennas. Four input streams, {x1, x2, x3, x4}, are
spatially multiplexed across the transmission antennas. Corre-
spondingly, the equivalent channel matrix, H, has four column
fading vectors, {h1,h2,h3,h3}, with each fading vector rele-
vant to one of the four data streams.

The four transmission streams can be further divided into two
groups based on the two STTD encoders. The first and sec-
ond data streams {x1, x2} are in group 1 associated with the
first STTD encoder, and the second group contains the third and
fourth data streams {x3, x4} related to STTD encoder 2. Due to
the orthogonality of the STTD encoder, the channel vectors be-
longing to the same transmission group are orthogonal to each
other, i.e.,

hH1 h2 = hH2 h1 = 0, (6a)

hH3 h4 = hH4 h3 = 0. (6b)

However, there are still interferences between the data streams
belonging to different transmission groups, and this interference
will seriously affect the performance of the DSTTD system.

III. PERFORMANCE ANALYSIS

A. Optimum Combining

To suppress the interference between the two spatially mul-
tiplexed transmission groups, optimum combining (OC) is em-
ployed at the receiver. The OC detection vectors for the kth data
stream can be written by [9]

wk =
(
Bk +

1
ρ
I2Nr

)−1

hk (7)

where ρ = Es/N0 is the signal to noise ratio (SNR) of one data
stream without fading, I2Nr

is an 2Nr × 2Nr identity matrix,
and the matrix Bk is the interference covariance matrix defined
below

Bk =
{

h3hH3 + h4hH4 , for k = 1, 2,
h1hH1 + h2hH2 , for k = 3, 4.

(8)

From the OC weight vector given in (7), the detection variable
for the kth data stream can be formulated as wH

k rk, and the
corresponding SINR of the kth data stream is

γk =
|wH

k hk|2
wH
k

(
Bk + 1

ρI2Nr

)
wk

. (9)
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To simplify the SINR representation given in (9), we left mul-

tiply both sides of (7) with wH
k

(
Bk + 1

ρI2Nr

)
, and the result

is

wH
k

(
Bk +

1
ρ
I2Nr

)
wk = wH

k hk. (10)

Substituting (10) into (9) yields

γk = wH
k hk. (11)

Combining (7) with (11) leads to an alternative representation
of the SINR as

γk = hHk

(
Bk +

1
ρ
I2Nr

)−1

hk, (12)

with the matrix Bk defined in (8). The statistical properties of
the SINR given in (12) is analyzed in the next subsection to
facilitate the error performance analysis.

B. Statistical Properties of the SINR

For i.i.d. fading channels with variance normalized to unity,
the post-detection SINR of the four data streams share the same
statistical properties. Without loss of generality, the analysis is
performed for the first data stream, x1, and the results can be
directly applied to other data streams.

From (8) and (12), the SINR γ1 can be written as

γ1 = hH1

(
h3hH3 + h4hH4 +

1
ρ
INr

)−1

h1. (13)

Performing eigenvalue decomposition (EVD) for the interfer-
ence covariance matrix B1 = h3hH3 + h4hH4 yields B1 =
UΛUH . The matrices U and Λ are defined as

U =
[

u1 u2 · · · u
Nr

] ∈ CNr×Nr , (14a)

Λ = diag
[
λ1 λ2 0 · · · 0

] ∈ CNr×Nr (14b)

where Λ is a diagonal matrix, with the diagonal elements λk
being the eigenvalues of Bk, and uk are the corresponding or-
thonormal eigenvectors defining the eigen-space. Since B is the
summation of two independent vectors, there are only two non-
zero eigenvalues, λ1 and λ2. Due to the orthonormality of the
eigenvectors, the matrix U is unitary, i.e., UHU = INr

.
With EVD, The SINR given in (13) can be rewritten as

γ1 = hH1 U
(
Λ +

1
ρ
I2Nr

)−1

UHh1. (15)

If we define a new vector, g = UHh1, then the SINR γ1 can be
further simplified to

γ1 =
2∑
k=1

|gk|2
λk + 1/ρ

+
2Nr∑
k=3

|gk|2 · ρ. (16)

where gk is the kth element of the vector g. Since the matrix
U is unitary, g is still zero-mean complex Gaussian distributed
with covariance matrix E[ggH ] = I2Nr

.
The SINR given in (16) conditioned on the eigenvalues λ1

and λ2 is the summation of 2Nr independent exponentially dis-
tributed random variables (RV). Thus, the moment generating
function (MGF) Mγ|λ(s) = Eγ1|λ(e

sγ) of γ1 conditioned on
λ1 and λ2 is [10]

Mγ|λ(s) =
1

(1 − s
λ1+1/ρ )

· 1
(1 − s

λ2+1/ρ )
· 1
(1 − ρs)2Nr−2

, (17)

where E(·) represents mathematical expectation.
The derivation of the unconditional MGF requires the knowl-

edge of the distribution of λk. For a general interference covari-
ance matrix as defined in (8), it’s usually very hard to find the
expressions of the eigenvalues. However, for DSTTD system,
the vectors h3 and h4 are mutually orthogonal to each other.
The orthogonality between the interfering vectors leads to an
explicit representation of the eigenvalues λ1 and λ2 as [10, p.
457]

λ1 = λ2 =
2Nr∑
k=1

(|hn3|2 + |hn4|2
)

= λ. (18)

Since the fading coefficients are zero-mean Complex Gaussian
distributed, the eigenvalues given in (18) are χ2-distributed with
4Nr degrees of freedom. The probability density function (pdf)
of λ is given by [10]

p(λ) =
λ2Nr−1

Γ(2Nr)
exp(−λ). (19)

With the pdf of the eigenvalues defined in (19), the uncondi-
tional MGF Mγ(s) can be obtained by integrating (17) over the
distribution of λ as

Mγ(s) =
1

(1 − ρs)2Nr−2

∫ +∞

0

1
(1 − s

λ+1/ρ )
2
λ2Nr−1

Γ(2Nr) exp(−λ)dλ.

(20)

The MGF of (20) can also be expressed in closed-form as

Mγ(s) =
1

(1 − ρs)2Nr−2
×

[
1 + (2s− s2)

(
1
ρ
− s

)2Nr−1

× exp
(

1
ρ
− s

)
Γ

(
1 − 2Nr,

1
ρ
− s

)
+ s2

(
1
ρ
− s

)2Nr−2

× exp
(

1
ρ
− s

)
Γ

(
2 − 2Nr,

1
ρ
− s

)]
, (21)

where Γ(a, x) =
∫ +∞
x

ta−1e−tdt is the incomplete Gamma
function [12, (8.350.2)]. The derivation of (21) is delegated to
the Appendix.
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Table 1. Parameters of (24) for Various Modulation Schemes.
Modulation ζ β1 β2 φ1 φ2

MPSK sin2 π
M

1 0 π − π
M

0
MASK 3

M2−1
2(1 − 1

M
) 0 π

2
0

MQAM 3
2(M−1)

4
(
1− 1√

M

)
−4

(
1− 1√

M

)
2 π

2
π
4

Eqn. (21) gives the unconditional MGF of the SINR γ1 at the
presence of interferences from h3x3 and h4x4. If no interfer-
ence cancellation is employed at the receiver, then (21) can be
used to describe the MGF of the SINR of all the four spatially
multiplexed data streams.

If successive interference cancellation is equipped at the re-
ceiver, then the results from the detection of one transmission
group (two data streams) can be used to remove the interference
during the detection of the other group. Without loss of gener-
ality, it’s assumed here that the streams in the group {x1, x2}
are detected first, and the results are used in interference can-
cellation for data streams {x3, x4}. For such system configu-
ration, the statistical properties of the SINR γ1 and γ2 remain
unchanged. If we assume ideal interference cancellation, i.e.,
no interference is present during the detection of {x3, x4}, then
the post-detection SNR γ̂3 and γ̂4 can be written as

γ̂3 = γ̂4 = ρ ·
Nr∑
n=1

(|hn3|2 + |hn4|2
)

= ρ · λ, (22)

with λ being defined in (18). Apparently, the SNR γ̂3 and γ̂4 are
χ2-distributed with 4Nr degrees of freedom. The corresponding
MGF of the SNR γ̂k is

Mγ̂(s) =
1

(1 − ρs)2Nr
. (23)

The MGFs of the post-detection SINR or SNR will be used
in the error performance analysis.

C. Performance Analysis

In this subsection, we derive the symbol error rate (SER) ex-
pression for linearly modulated systems, such as M-ary Ampli-
tude Shift Keying (MASK), M-ary Phase Shift Keying (MPSK),
and square M-ary Quadrature Amplitude Modulation (MQAM).

For MASK, MPSK, and MQAM system, the error probability
conditioned on the post-detection SINR (or SNR) can be written
in a unified form as [11]

P (E|γ) =
2∑
i=1

βi
π

∫ ψi

0

exp
{
−ζ · γ

sin2 θ

}
dθ, (24)

where the values of the parameters βi, ψi and ζ for different
modulation schemes are given in Table 1.

The unconditional error probability can be obtained by aver-

aging P (E|γ) over the SINR (or SNR) γ as

P (E) =
2∑
i=1

βi
π

∫ +∞

0

∫ ψi

0

exp
{
−ζ · γ

sin2 θ

}
p(γ)dθdγ,

=
2∑
i=1

βi
π

∫ ψi

0

Mγ

(
− ζ

sin2 θ

)
dθ, (25)

where p(γ) and Mγ(s) are the pdf and MGF of γ, respectively.
For system without interference cancellation, the post-

detection SINR γn, for n = 1, 2, 3, 4, follow the same statistical
distribution, with the MGF Mγ(s) defined in (21). The overall
symbol error rate (SER) of the entire system, which can be cal-
culated by averaging over the individual SER of the four data
streams, is obviously equal to the SER of any of the four data
streams. Thus, the exact overall symbol error rate for DSTTD
system without interference cancellation can be obtained by re-

placing Mγ

(
− ζ

sin2 θ

)
of (25) with that defined in (21). The

integral in (25) only involves elementary functions and small
integration limits, thus it can be easily evaluated with numerical
methods.

On the other hand, for system with ideal SIC, there is no in-
terference present at one of the two transmission groups. If the
group {x1, x2} is detected first, then the MGF for the SNR at
the second group {x3, x4} can be described by (23), whereas
the statistical properties of the SINR of the first group remain
the same. With such system configuration, the overall system
error probability can be obtained by averaging the SER of the
two transmission groups as

P (E)=
2∑
i=1

βi
2π

∫ ψi

0

[
Mγ

(
− ζ

sin2 θ

)
+Mγ̂

(
− ζ

sin2 θ

)]
dθ, (26)

where Mγ(s) is the SINR MGF defined in (21), and Mγ̂(s) is
the MGF for the SNR given by (23). The error probability given
in (26) is based on the assumption of ideal interference cancel-
lation. However, for practical systems, residual interference is
always present at the receiver, especially at low SNR. Thus the
error probability given by (26) can be treated as a lower bound
for DSTTD system with practical SIC receiver.

IV. NUMERICAL EXAMPLES

Numerical examples are provided in this section to validate
the analytical expressions derived in this paper as well as to
compare the performance of DSTTD systems under various sys-
tem configurations.

During the simulation, the total transmission power from the
four transmission antennas are normalized to 1. As a common
practice of digital communication systems, Eb/N0 is used as
a metric to measure the SNR of the system. The relationship
between Eb/N0 and the per data stream SNR ρ used in the ana-
lytical SER expressions can be described as

ρ =
Eb/N0 · log2M

Nt
(27)
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Fig. 2. Error performance of 8PSK modulated DSTTD system with different
number of Rx antennas.

where Nt is the number of transmission antennas, and M is the
modulation constellation size.

Fig. 2 plots the SER of 8PSK modulated DSTTD system
with different number of receive antennas. In this example, no
interference cancellation is employed at the receiver. In Fig. 2,
the SER results from the analytical error expressions are com-
pared to those obtain from simulations, and perfect agreement
between them are observed. In addition, as expected, the er-
ror performance increases with the number of receive antennas
thanks to the increase of spatial diversity order contributed by
the receive antennas.

The impact of interference cancellation on system perfor-
mance is illustrated in Fig. 3 for QPSK and 16QAM modulated
systems. Four antennas are used at the receiver. It’s apparent
from Fig. 3 that systems with SIC (labeled as DSTTD-IC) al-
ways outperform DSTTD systems without SIC. A performance
gain of about 0.5 dB is observed for both of the two modula-
tion schemes. In addition, the results presented in this figure
show that the analytical expression derived for DSTTD system
with SIC is a very tight low bound compared to the simulation
results, and it can accurately predict the error performance of
corresponding DSTTD systems.

V. CONCLUSIONS

Theoretical error performance of DSTTD system was inves-
tigated in this paper. Spatial multiplexing employed by DSTTD
system introduces interferences among transmission antennas.
By analyzing the eigen-structure of the interference covariance
matrix, we obtained closed-form expressions of the MGF of the
post-detection SINR at DSTTD receiver. The results were then
used to obtain the exact analytical symbol error rate expressions
for linearly modulated DSTTD systems. In addition, a tight low
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Fig. 3. Comparison of the error performances of DSTTD systems with and
without interference cancellation.

bound was derived for DSTTD system with successive interfer-
ence cancellation. Simulation results show that the analytical
results obtained in this paper can accurately predict the perfor-
mance of DSTTD systems with or without SIC.

APPENDIX: DERIVATION OF (21)

Define b = 1
ρ − s, then (20) can be written as

Mγ(s) =
1

(1 − ρs)2Nr−2

∫ +∞

0

(
1 +

s

λ+ b

)2
λ2Nr−1

Γ(2Nr)
e−λdγ,

=
1

(1 − ρs)2Nr−2
[1 + 2s · f(2Nr, b)+

s2 ·
∫ +∞

0

1
(λ+ b)2

λ2Nr−1

Γ(2Nr)
e−λdλ

]
, (28)

where the function f(a, b) is defined as

f(a, b) =
∫ +∞

0

1
λ+ b

λa−1

Γ(a)
e−λdλ, (29)

and it can be written in closed-form as [12, (3.383.10)]

f(a, b) = ba−1ebΓ(1 − a, b). (30)

The integral in the expression of (28) can be simplified with
integration by part, and the result is

∫ +∞

0

1
(λ+ b)2

λ2Nr−1

Γ(2Nr)
e−λdλ

= −λ
2Nr−1

Γ(2Nr)
e−λ

λ+ b

∣∣∣∣
+∞

0

+ f(a− 1, b) − f(a, b),

= f(a− 1, b) − f(a, b). (31)
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Replacing (31) into (28) yields

Mγ(s) =
1

(1 − ρs)2Nr−2

[
1 + (2s− s2)f(2Nr, b)+

s2f(2Nr − 1, b)
]
. (32)

Combining (30) and (32) leads to (21), and this completes the
derivation.
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