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Abstract— A simple and novel method is presented to ap-
proximate by the lognormal distribution the probability density
function of the sum of correlated lognormal random variables.
The method is also shown to work well for approximating the
distribution of the sum of lognormal-Rice or Suzuki random
variables by the lognormal distribution. The method is based
on matching a low-order Gauss-Hermite approximation of the
moment-generating function of the sum of random variables
with that of a lognormal distribution at a small number of
points. Compared with methods available in the literature such
as the Fenton-Wilkinson method, Schwartz-Yeh method, and
their extensions, the proposed method provides the parametric
flexibility to address the inevitable trade-off that needs to be made
in approximating different regions of the probability distribution
function.

I. INTRODUCTION

The sum of lognormal random variables (RV) often occurs
in wireless systems in signal to interference plus noise ratio
(SINR), outage analysis, received signal power in a multipath
environment, etc., [1, Chp. 3], [2]. Therefore, considerable
efforts have been devoted to analyze the statistical properties
of the lognormal sum. While exact closed-form expressions for
its probability density function (pdf) are unknown, several ana-
lytical approximation methods have been proposed in the liter-
ature [3]–[8]. The lognormal sum pdf is approximated by a sin-
gle lognormal pdf by Fenton-Wilkinson (F-W) [3], Schwartz-
Yeh (S-Y) [4], and Beaulieu-Xie [5] methods. Bounds on the
lognormal sum cumulative distribution function (CDF) have
also been proposed in [1], [6]; but, these do not directly
provide the form and parameters of the approximating pdf.

While independent lognormal RVs were the primary con-
cern when the above methods were first proposed, extensions
of the F-W [9], [10], S-Y [11], and Schleher’s [9] methods
have been proposed to handle the sum of correlated lognormal
RVs. Correlated lognormal RVs, which are the focus of this
paper, are of great interest because the shadowing of inter-cell
interferers in a cellular system is correlated, with a typical
site-to-site correlation coefficient of 0.5 [12].

The various methods described above all have their advan-
tages and shortcomings, and none is unquestionably better
than the others [9]. The S-Y method and its extension to the
correlated case cannot accurately estimate small values of the
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complementary cumulative distribution function (CCDF) [13],
while the F-W method and its extension cannot accurately
estimate small values of the CDF. The outage probability
bounds derived in [8] can also handle the correlated case, but
they do not directly provide the form and parameters of the
approximating pdf, and can be quite loose in some cases.

This paper presents a general method that uses the moment
generating function (MGF) as a tool to approximate the sum
of correlated lognormal RVs by a single lognormal RV. The
method is an extension of an approach that was used recently
for approximating the sum of independent lognormal RVs by
a single lognormal RV [14]. The proven permanence of the
lognormal pdf when the number of summands approaches
infinity lends credence to such an approach [15], [16]. As we
show, the method overcomes the shortcomings of the previous
approaches by providing the parametric flexibility to make the
inevitable trade-off in accurately matching different portions
of the pdf.

We show that the proposed method can also approximate
the sum of independent Suzuki RVs [17], [18, Chp. 5] and,
more generally, the sum of lognormal-Rice RVs by a single
lognormal RV. Such sums arise, for example, in instantaneous
co-channel interference power calculations in which Rayleigh
or Ricean fading along with lognormal shadow fading need to
be accounted for. Approximating a sum of RVs by a lognormal
RV has great utility in analysis because the ratio or product
of two lognormal RVs remains a lognormal RV.

That the characteristic function, which is a special case of
the MGF, can be used to find the approximating parameters has
also been recognized by Beaulieu-Xie [5] and Barakat [15].
However, their methods require extremely accurate numerical
computation at a sufficiently large number of points, and are
quite involved. Moreover, they are fundamentally limited to
the case in which the lognormal RVs are independent.

The paper is organized as follows: Section II motivates and
defines the proposed method for approximating the sum of cor-
related lognormal RVs by a single lognormal RV. Section III
extends the method to approximate the sum of Suzuki or,
more generally, lognormal-Rice RVs by a single lognormal
RV. Numerical examples are used in Section IV to compare
it with other methods and to demonstrate its accuracy. The
conclusions follow in Section V.
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II. SUM OF CORRELATED LOGNORMAL RVS

A. Motivation of Proposed Method

Let Y1, . . . , YK be K lognormal RVs with the joint distri-
bution p

Y1,...,YK
(y1, . . . , yK), with marginal pdfs denoted by

p
Yi

(x), for 1 ≤ i ≤ K, respectively. Then each lognormal
RV, Yi, can be written as 100.1Xi , where Xi is a Gaussian RV
with mean µ

Xi
dB and standard deviation σ

Xi
dB.

The F-W method, the S-Y method, and the extensions
proposed in the literature to apply these two methods to the
correlated lognormal sum case are special instances of the
following general system of equations:∫ ∞

0

fm(y)p
Y
(y)dy =

∫ ∞

0

fm(y)p
(
∑K

i=1 Yi)
(y)dy, (1)

where m equals 1 or 2, f1(.) and f2(.) are weight functions,
and Y is the approximating lognormal RV [14].

The F-W method matches the mean and variance of the
lognormal sum and the approximating lognormal RV, and thus
uses the weight functions f1(y) = y and f2(y) = (y − µ

Y
)2,

where µ
Y

is the mean of Y . As both of these functions
monotonically increase with y, approximation errors in the
tail portion (large values of argument) of the lognormal sum
pdf are penalized more, which explains why the F-W method
tracks the tail portion well. On the other hand, the S-Y method,
which matches the mean and variance of the logarithms of
the lognormal sum and the approximating lognormal RV,
employs the weight functions f1(y) = log10 y and f2(y) =
(10 log10 y − µ

X
)2, where µ

X
is the mean of the Gaussian

RV X = 10 log10 Y . Due to the singularity of log10 y at
y = 0, mismatches near the origin are severely penalized by
both these weight functions. Compared to the F-W method, the
S-Y method accords a lower penalty to errors in the pdf tail.
For these reasons, it does a better job tracking the head portion
(small values of argument) of the pdf, but not its tail. Note that
both the F-W and the S-Y methods use fixed weight functions
and offer no way of overcoming their respective shortcomings.

The MGF, ΨY (s), of a random variable, Y , which is defined
as

ΨY (s) =
∫ ∞

0

exp(−sy)p
Y
(y)dy, (Re(s) ≥ 0), (2)

can also be interpreted as the weighted integral of the pdf, with
the weight function as the exponential function exp(−sy),
which monotonically decreases in magnitude as Re(s) in-
creases. Here, Re(s) denotes the real part of the complex
number s. The key difference compared to the previous
methods, is that varying s provides a mechanism for adjusting,
as required, the penalties allocated to errors in the head and tail
portions of the lognormal sum pdf. For independent lognormal
RVs, it possesses the additional advantage that the MGF of the
sum is the product of the individual MGFs. We shall restrict
our attention to real s in this paper. Varying s from 0 to ∞
still affords considerable flexibility, and is sufficient for our
problem.

Based on the above motivation, this paper proposes a
method that matches, at two points, the MGF of the sum of

correlated lognormal RVs with the MGF of the single approx-
imating lognormal RV. For this, we now derive expressions
for the MGF of a lognormal RV and the sum of correlated
lognormal RVs.

B. Lognormal MGF

No general closed-form expression for the MGF of the
lognormal pdf is available. However, for real s, it can be
readily expressed by a series expansion based on Gauss-
Hermite integration. The MGF of a lognormal RV, Y , for real
s, can be written as

ΨY (s) =
∫ ∞

0

exp(−sy)
ξ

yσ
X

√
2π

exp
[
− (ξ loge y − µ

X
)2

2σ2
X

]
dy,

=
N∑

n=1

wn√
π

exp

[
−s exp

(√
2σ

X
an + µ

X

ξ

)]
+ RN ,

(3)

where µ
X

and σ
X

are the mean and standard deviation of the
Gaussian RV X = 10 log10 Y . In (3), which is the Gauss-
Hermite series expansion of the MGF, N is the Hermite
integration order, RN is a remainder term that decreases as N
increases, and ξ = 0.1 loge 10. The weights, wn, and abscissas,
an, for N up to 20 are tabulated in [19, Tbl. 25.10].

From (3), we define the Gauss-Hermite representation,
Ψ̂Y (s;µ

X
, σ

X
), of the lognormal MGF by removing RN as

follows:

Ψ̂Y (s;µ
X

, σ
X

) �
N∑

n=1

wn√
π

exp

[
−s exp

(√
2σ

X
an + µ

X

ξ

)]
.

(4)

C. MGF of Sum of Correlated Lognormal RVs

We now find the MGF of the sum of K correlated lognormal
RVs, {Yi}K

i=1, with corresponding Gaussian RVs, {Xi}K
i=1.

The K Gaussian RVs, Xi = 10 log10 Yi, i = 1, . . . ,K, follow
the joint distribution

pX(x) =
1

(2π)K/2 |C|1/2
exp

(
− (x − µ)†C−1(x − µ)

2

)
,

(5)
where C is the covariance matrix, µ is the vector of means,
|.| denotes the determinant, and (.)† denotes the Hermitian
transpose. The MGF of Y1 + · · · + YK can be written as:

Ψ(c)

(∑K
k=1 Yk)(s)

=
∫ ∞

−∞

1

(2π)K/2 |C|1/2

K∏
i=1

exp
(
−s

[
exp

(
xi

ξ

)])
× exp

(
− (x − µ)†C−1(x − µ)

2

)
dx. (6)

Let Csq be the square root of the covariance matrix C, i.e.,
C = CsqC

†
sq. In general, if the eigen-decomposition of C is

UΛU†, where U is the eigen-space of C and the diagonal
matrix Λ contains the eigen-values of C, then Csq = UΛ1/2.
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Using the decorrelating transformation x =
√

2Csqz + µ, xk

is given by

xk =
√

2
K∑

j=1

c′kjzj + µk, k = 1, . . . , K, (7)

where c′kj is the (k, j)th element of Csq. Therefore, (6)
becomes

Ψ(c)

(∑K
k=1 Yk)(s) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

1
πK/2

exp
(−z†z

)
×

K∏
k=1

exp

−s

exp

√
2

ξ

K∑
j=1

c′kjzj +
µk

ξ

 dz. (8)

As before, taking the Gauss-Hermite expansion with respect
to z1 yields

Ψ(c)

(∑K
k=1 Yk)(s)

=
∫ ∞

−∞
· · ·
∫ ∞

−∞

1
π(K−1)/2

exp

(
−

K∑
i=2

|zi|2
)(

N∑
n1=1

wn1√
π

×
K∏

k=1

exp

−s

exp

√
2

ξ

K∑
j=2

c′kjzj +
√

2
ξ

c′k1an1 +
µk

ξ


× dz2 . . . dzK + R

(1)
N , (9)

where R
(1)
N is the remainder term. Proceeding in a similar

manner for z2, . . . , zK , we get

Ψ(c)

(∑K
k=1 Yk)(s) =

N∑
nK=1

· · ·
N∑

n1=1

wn1 . . . wnK

πK/2

×
K∏

k=1

exp

(
−s

[
exp

(√
2

ξ

K∑
l=1

c′klanl
+

µk

ξ

)])
+ R

(K)
N , (10)

where R
(K)
N is the final remainder term. Rearranging the

terms and dropping R
(K)
N results in the following Gauss-

Hermite representation, Ψ̂(c)

(∑K
k=1 Yk)(s;µ,C), for the MGF of

the correlated lognormal sum:

Ψ̂(c)

(∑K
k=1 Yk)(s;µ,C) �

N∑
n1=1

· · ·
N∑

nK=1

[
K∏

k=1

wnk√
π

]

× exp

−s

K∑
k=1

exp

√
2

ξ

K∑
j=1

c′kjanj
+

µk

ξ

 . (11)

The above functional form also mimics the following de-
sirable property of the MGF: For independent lognormal
RVs, it is given by the product of the Gauss-Hermite
MGF approximations of the individual summands, i.e.,
Ψ̂(c)

(∑K
k=1 Yk)(s;µ,C) =

∏K
k=1 Ψ̂Yk

(s;µk, σk).

D. Proposed Method

The sum, Y1 + · · ·+YK , of K correlated lognormal RVs is
approximated by a single lognormal RV, Y , whose parameters,
µ

X
and σ

X
, are found by matching their respective Gauss-

Hermite representations of the MGF at s = s1 and s2. This
leads to the following system of two equations:

N∑
n=1

wn√
π

exp

[
−si exp

(√
2σ

X
an + µ

X

ξ

)]
= Ψ̂(c)

(∑K
k=1 Yk)(si;µ,C), at i = 1 and 2, (12)

where Ψ̂(c)

(∑K
k=1 Yk)(s;µ,C) is given by (11).

Note that the right hand side of the above two equations
is a constant that needs to be calculated only twice at s1 and
s2. These non-linear equations in µ

X
and σ

X
can be readily

solved numerically using standard functions such as fsolve
in Matlab and NSolve in Mathematica.

While the accuracy of the MGF approximation increases as
the Hermite integration order, N , increases, accurate estimates
of µ

X
and σ

X
can be obtained even for small N . This is

because the form of (12) makes them insensitive to errors
in the MGF approximation. We have found N = 12 to be
more than sufficient for many different system parameters,
which is small compared to the 20 to 40 terms required to
achieve numerical accuracy in each iterative step in the S-Y
method [20].

Increasing s penalizes more the errors in approximating
the head portion of the lognormal sum pdf, while reducing
s penalizes errors in the tail portion, as well. The inevitable
trade-off that needs to be made in approximating both the
head and tail portions of the pdf can now be done depending
on the application. For example, when the lognormal sum
arises because various signal components add up and the main
performance metric is a small signal outage probability, the
head of the CDF needs to be computed accurately. On the other
hand, when the lognormal sum appears in the denominator
only, for example, when the co-channel interferer powers
add up in the SINR calculation, it is the tail portion of
the sum pdf or, equivalently, the tail portion of the CCDF
that needs to be calculated accurately to analyze outage. The
proposed method can handle both of these applications by
using different matching pairs, (s1, s2). As a general rule,
larger values of s are used to match the CDF while smaller
values of s are used to match the CCDF. This is elaborated
upon in Section IV.

For the special case of the sum of two zero-mean lognormal
RVs with correlation coefficient ρ and variance σ dB, the
expression for Ψ̂(c)

(Y1+Y2)
(s) in (11) simplifies to the following

closed-form:

Ψ̂(c)
(Y1+Y2)

(s) �
N∑

n=1

N∑
m=1

wnwm

π
exp

(
−s

[
exp

(√
2σam

ξ

)

+ exp

(√
2(1 − ρ2)σan +

√
2σρam

ξ

)])
. (13)
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III. SUM OF INDEPENDENT SUZUKI OR LOGNORMAL-RICE

RANDOM VARIABLES

The lognormal-Rice RV is the product of a lognormal RV
and a Ricean-fading RV, and can be written as

W = Z 100.1X , (14)

where Z is a Ricean RV with unit power and the Rice-
coefficient κ. As mentioned, it models the signal power due
to shadowing and the presence of a line of sight component
along with a large number of non-line of sight components.
The Suzuki RV, which is the product of a lognormal RV and
a Rayleigh fading RV, is a special case of the lognormal-Rice
RV, and occurs when κ = 0.

Given the desirable properties of the lognormal RV, tech-
niques have been proposed in the literature to approximate the
sum of K independent lognormal-Rice RVs by a single log-
normal RV. An extension of the F-W-based moment matching
method was proposed in [21]. Another technique is a two-step
approximation process in which each of the lognormal-Rice
or Suzuki RVs is first approximated by a lognormal RV (by
equating the means and variances), and then the sum of the
lognormal RVs is again approximated by a single lognormal
RV using the F-W or the S-Y methods. The sum of Suzuki RVs
has instead been approximated by another Suzuki RV in [22].
Exact formulae are available in the literature that express the
outage probability of a sum of lognormal-Rice RVs in the form
of a single integral, which is evaluated numerically [23], [24].
However, these do not address the problem of approximating
by a single lognormal RV.

We now extend the proposed method to approximate the
sum of K independent lognormal-Rice RVs, S1+· · ·+SK , by
a single lognormal RV, Y . For this, we first need an expression
for the MGF of the lognormal-Rice RVs. Using Gauss-Hermite
integration and neglecting the remainder term result in the
following MGF approximation for the kth RV, Sk:

Ψ̂Sk
(s;µk, σk, κk)

�
K∑

i=1

wi(1 + κk)/
√

π

1 + κk + s exp
(√

2σkai

ξ + µk

ξ

)
× exp

−
sκk exp

(√
2σkai

ξ + µk

ξ

)
1 + κk + s exp

(√
2σkai

ξ + µk

ξ

)
 , (15)

where µk and σk are the logarithmic mean and logarithmic
standard deviation of the shadowing component, and κk is the
Rice factor [25]. As before, we restrict our attention to real
s, which still provides considerable freedom in adjusting the
integral weights.

Therefore, the mean µ
X

dB and variance σ
X

dB – the
defining parameters of Y – are determined by matching, as
before, the Gauss-Hermite representations of the MGFs at two

points. This leads to the following system of two equations:

N∑
n=1

wn√
π

exp

[
−s exp

(√
2σ

X
an + µ

X

ξ

)]

=
K∏

k=1

Ψ̂Sk
(si;µk, σk, κk), at i = 1 and 2. (16)

The right hand side term,
∏K

k=1 Ψ̂Sk
(si;µk, σk, κk), is a

number, which consists entirely of known quantities, and needs
to be evaluated only twice at s1 and s2 using (15).

It can be easily seen that the mixture case, in which not
all of the RVs follow the same type of distribution, can
also be readily approximated by a single lognormal RV by
means of the proposed method by using the corresponding
Gauss-Hermite representations for the MGFs of lognormal or
lognormal-Rice or Suzuki RVs.

IV. NUMERICAL EXAMPLES

In the examples below, we plot the CDFs and CCDFs
of the sum pdf obtained from Monte Carlo simulations and
compare them with those obtained using the various lognormal
approximation methods. Small values of the CDF reveal the
accuracy in tracking the head portion of the pdf, while small
values of the CCDF reveal the accuracy in tracking the tail
portion of the pdf. We also show that the same values of s1

and s2 work well for a variety of system parameters.

A. Sum of Correlated Lognormal RVs

We first consider the sum of K correlated lognormal RVs.
As an example, the covariance matrix takes the functional
form:

C =


1 ρ · · · ρK−1

ρ 1 · · · ρK−2

. . .
ρK−1 ρK−2 · · · 1

 , (17)

where ρ is the correlation coefficient between any two succes-
sive RVs. The logarithmic mean of each of the RVs is 0 dB.

The CDF of the sum of 4 correlated lognormal RVs,
obtained through simulations, is plotted in Fig. 1 for the case in
which all the constituent RVs have σ = 8 dB. The CDF of the
lognormal RV with parameters estimated using the proposed
method (using (12)) is compared with the CDFs obtained from
the F-W and S-Y extensions. The comparison is made for two
different values of the correlation coefficient: ρ = 0.3 and
ρ = 0.7. For the proposed method, the MGFs are matched at
s1 = 0.2 and s2 = 1.0. It can be seen that the proposed method
can accurately track the CDF of the correlated lognormal sum,
and is marginally better than the S-Y extension method. The
F-W extension is the least accurate of all the methods.

Figure 2 plots the corresponding CCDF curves. As the tail
of the pdf needs to be matched accurately to match the CCDF
curves, smaller values of s are used in the proposed method:
s1 = 0.001 and s2 = 0.005. It can be seen that the accuracy
of the proposed method is comparable to that of the F-W
extension, and is significantly better than the S-Y extension,
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which is the least accurate of all the methods. As expected,
when the constituent lognormal RVs are highly correlated, all
the methods can accurately track the CDF and the CCDF.

Figure 3 plots the CDF of the sum of different numbers of
correlated lognormal RVs with ρ = 0.3 and shows that the
proposed method is accurate in all cases. As in Fig. 1, the
MGF is matched at s1 = 0.2 and s2 = 1.0. As expected, as
K decreases, the accuracy of all methods improves.

B. Sum of Suzuki or Lognormal-Rice RVs

The effect of the Rice-coefficient, κ, is examined in Fig-
ure 4, which plots the CDF of the sum of 6 lognormal-Rice
RVs with a lognormal variance of σ = 6 dB and a logarithmic
mean of µ = 0 dB. Also plotted is the CDF of the lognormal
distribution obtained from the proposed method (using (16)).
Figure 5 plots the corresponding CCDF. As was done in
Section IV-A, the MGFs are again matched at s1 = 0.2 and
s2 = 1.0 to track the CDF and at s1 = 0.001 and s2 = 0.005
to track the CCDF. We can see that the CDF and the CCDF can
both be accurately approximated. As κ decreases, the accuracy
of the approximation by a lognormal improves.

Figure 6 evaluates the impact of varying the number of sum-
mands, K, on the accuracy of the lognormal approximation It
plots the CDF of the lognormal approximations obtained using
the proposed method and the F-W-based method and compares
them with Monte Carlo simulation results. It can be seen that
the proposed method accurately approximates the sum of K
Suzuki RVs by a single lognormal RV for K = 2, 4, and
8 RVs. As before, the MGFs are matched at s1 = 0.2 and
s2 = 1.0.

V. CONCLUSIONS

We proposed a simple and novel method to approximate the
sum of several correlated lognormal random variables with a
single lognormal random variable. The method was also shown
to accurately model the sum of independent lognormal-Rice
(or Suzuki) RVs by a single lognormal RV. The results led to
the important and useful observation that the points at which
the Gauss-Hermite representations of the MGF are matched to
obtain an accurate lognormal approximation remain the same
over a wide range of system parameters. Specifically, it was
shown that matching at s1 = 0.2 and s2 = 1.0 accurately
modeled the CDF of the sum of correlated lognormal or
lognormal-Rice RVs over a wide range of lognormal variances,
correlations, Rice-coefficients, and for different numbers of
summands. Similarly, matching at s1 = 0.001 and s2 = 0.005
accurately tracked the CCDF of the sum of RVs.

By using an approximate and short Gauss-Hermite expan-
sion of the lognormal MGF, the proposed method circumvents
the requirement for very precise numerical computations at a
large number of points. It is numerically stable and, as we
show, accurate. The method was motivated by the interpreta-
tion of the MGF as a weighted integral of the pdf. It is a tool
that provides the parametric flexibility needed to approximate,
as accurately as required, different portions of the pdf.
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Fig. 1. Comparing the accuracy of the lognormal approximation techniques
in tracking the CDF of the sum of correlated lognormal RVs for different ρ
(K = 4, σ = 8) with s1 = 0.2 and s2 = 1.0 for the proposed method.
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Fig. 2. Comparing the accuracy of the lognormal approximation techniques
in tracking the CCDF for the sum of correlated lognormal RVs for different ρ
(K = 4, σ = 8) with s1 = 0.001 and s2 = 0.005 for the proposed method.
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Fig. 3. Effect of number of summands, K, on the accuracy of approximating
the CDF (σ = 8 dB and ρ = 0.3) with s1 = 0.2 and s2 = 1.0 for the
proposed method.
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Fig. 4. Effect of Rice-factor, κ, on approximating the CDF of a sum of
lognormal-Rice RVs by a lognormal RV using the proposed method with
s1 = 0.2 and s2 = 1.0 (σ = 6 dB).
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of lognormal-Rice RVs by a lognormal RV using the proposed method with
s1 = 0.001 and s2 = 0.005 (σ = 6 dB).
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the CDF for σ = 6 dB with s1 = 0.2 and s2 = 1.0 for the proposed method.
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