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Abstract— The performances of coherent diversity receivers with
noisy channel estimation are examined. Fading channel gain estimates
are modeled as sums of the true fading channel gain values plus inde-
pendent Gaussian distributed estimation errors. The optimal diversity
receiver for coherent reception with noisy channel state information
and independent and identically distributed fading channels is derived.
Exact expressions for the average error probability of optimal diver-
sity MPSK with noisy channel estimation are derived for Rayleigh and
Ricean fading channels; closed-form expressions are obtained for some
special cases. Some interesting observations regarding practical diver-
sity receiver design for higher-order modulation formats are drawn.

I. INTRODUCTION

Diversity reception is a classical method used in wireless commu-
nication systems for combating the hostile nature of fading chan-
nels, and the error performance analysis of diversity receivers in
fading channels has been a field of long-time interest, see [1]-[7]
and the references therein. A commonly used method for analyz-
ing error probability of digital communication systems is to average
the conditional error probability (CEP) P(E|vy) over the receiver
singal-to-noise ratio (SNR) -y, with the help of the probability den-
sity function (pdf) [2], characteristic function (CHF) [3], or moment
generating function (MGF) [4], [5] of .

Most previous works about performance analyses of coherent
diversity systems assume that the receiver has perfect knowledge
(noiseless estimation) of the fading channels. In the literature,
only few works are devoted to the performance analyses of non-
ideal systems. In [8], the effect of Gaussian error in maximal ratio
combining is studied. However, the mathematical models assumed
preclude using the analysis for independent additive noise and the
analysis is valid only for Gaussian error originating from temporal
decorrelation [9]. Further, digital modulations and error probabil-
ity are not considered in [8]. The error probabilities of systems
with non-ideal channel information for non-diversity systems are
obtained in [10] and [11] by seeking the pdf of the equivalent out-
put noise at the receiver, which is usually non-Gaussian distributed
and extremely complicated for analyses.

In this paper, error performances of optimal coherent diversity re-
ceivers operating on independent and identically distributed (i.i.d.)
fading channels with noisy channel estimation are analyzed. It is
shown that the conventional MRC receiver is no longer optimal
when there is channel estimation error in the system. A new op-
timal decision rule for coherent diversity receivers with noisy chan-
nel estimation is proposed to minimize the error probability of the
system. Based on this decision rule, the error probabilities for op-
timal coherent diversity receivers are derived for MPSK systems in
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both Rayleigh and Ricean fading channels. The error probability
in Rayleigh fading channels is evaluated with the help of the MGF
of the power of the fading channel, and a complex Gaussian distri-
bution based functional equivalency is employed for the evaluation
of system error performance in Ricean fading channels. Simulation
results are in excellent agreement with the theoretical results.

The rest of this paper is organized as follows. The system models
are given in Section II. Section III derives a new optimal decision
rule for diversity receivers operating with noisy estimates of i.i.d.
fading channels. The error probabilities of the corresponding re-
ceivers in Rayleigh and Ricean fading channels are derived in Sec-
tion IV. Numerical examples are given in Section V, and Section
VI concludes the paper.

II. SYSTEM AND CHANNEL MODELS

We consider a communication system with IV diversity receivers.
After sampling at the receiver, the input-output relationship of the
equivalent baseband system can be written in matrix form as

(1

where y = [y1(k),y2(k), - ,yn(k)]T € CNV*! is the sampled
output of the receivers with A7 representing the transpose of matrix
A, hy, = [hi(k), ha(k), - ,hn(k)]T € CN*1is the equivalent
discrete-time channel gain (CG) vector of the physical time-varying
fading channels, xj is the MPSK modulated symbol transmitted at
time instant k, and z = [21(k), z2(k),--- , 25 (k)]T € CVN*1is
a zero-mean additive white Gaussian noise vector with covariance
matrix NoIy, and Iy is the N x N identity matrix.

For Rayleigh and Ricean fading channels, the discrete-time CG
vector hj is made up of complex Gaussian random variables
(CGRVs) with mean vector u and covariance matrix Ry, i.e.,
hy, ~ N(u,Ryy,). The variance aﬁn , power 2,,, and mean value
Uy, of hy, (k) have the following relationships,

| KQ, 5
junl = 55 = /K,

where K is the Ricean factor defined as the ratio of the powers of
the specular component and the scattering components of the fading
channel. One has K = 0 for a Rayleigh fading channel, and, thus,
u=0.

The performs the
ceived samples based on the estimated CG vector flk
[hi(K), ha(k),--- ,hn(E)]T € CN*'.  The estimated CG
vector ﬁk is modeled as the sum of the true CG vector hj and the
estimation error vector e, = [eq(k), ea(k), - ,en(k)]T as

Vi =hy o+ 2

@)

receiver coherent detection of re-

flk =h; + e 3)
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where the elements of the error vector e; are assumed to be inde-
pendent zero-mean CGRVs, and they are independent of the ele-
ments of hy,. Then the covariance matrices R,;, = E (b flk) and
R;; = E(h{’hy) can be computed as

Rhfz
Ry,

E[hk (hk + ek)H} = Rh,h,
E[(hk + ek)(hk + ek)H] = Rpnn + Ree

(4a)
(4b)

2 L
e’

where R, = diag(o? ,0 2.)isan N x N diagonal matrix

with 02 = E[|e,(k)|*] being the power (variance) of the channel
estimation error e, (k). Based on these definitions, we have the
following proposition.

Proposition 1: The estimated CG vector flk and the true CG
vector hy, are jointly Gaussian distributed, and the conditional pdf
p(hy|hy) can be written as

, 0,

A 1 _
p(hg|hy) = TR [—(hk — ) TR L (b uhlﬁ)]
where
w, u+ Ry (R, + Ree) 1 (hy, — u) (62)
R, = Run—Run(Run +Ree) 'Ry (6b)

is the conditional mean vector and conditional covariance matrix,
respectively.
Proof: The proof of Proposition 1 is omitted here for the sake
of brevity. |
To facilitate analysis, we define the covariance coefficient be-
tween the estimated CG h,, (k) and the true CG h,, (k) of the nth
sub-channel as

E{{hn(k) = w)lbn(k) =]} [, D
U,QLTLU%1 o}, T2,

where a* denotes the complex conjugate of the complex number a,
h, = Ellha(k) —ul’]and 07 = Ellhn(k) —ul’] = 0} +07 is
the variance of h,, (k) and h,, (k), respectively. The value of p,, is in
the interval (0, 1] with p,, = 1 corresponding to noiseless (perfect)
channel information at the receiver. Since diversity receivers usu-
ally use the same channel estimation algorithm for all the branches,
we assume that p = p; = py = --- = pn for systems with i.i.d.
fading channels, and the coefficient p is assumed to be known to the
receiver once the channel estimation algorithm is chosen.

Pn =

g

III. OPTIMAL DIVERSITY RECEIVER WITH NOISY CHANNEL
ESTIMATION

In this section, an optimal decision rule for coherent diversity
reception is proposed to minimize the error probability of systems
with noisy channel estimation.

Theorem 1: For diversity receivers with noisy estimation of i.i.d.
fading channels, if the transmitted symbols are equiprobable, then
the detection rule that minimizes the system error probability is

2y, = argmin {|ay, — sm|2} (8)
sm€ES
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where S = {s,, = VE,;e %% |m =1,2,--- , M} is the modula-
tion alphabet set, and o, = [p%hy + (1 — p?)u] 7y, is the decision
variable.

Proof: From Proposition 1, we know that h;, conditioned on
ﬁk, is Gaussian distributed; it follows from (1) that y; conditioned
on hy, and xy is also Gaussian distributed. If we assume that the
symbol s, € S is transmitted, where S is the modulation alpha-
bet set, then we have yk|(flk,, Sm) ~ /\/’(uy‘;b’Sm7 Rym,sm)
bining (1), (6), (7) and the fact that Ry, = o1y for i.i.d. fading

. Com-

channels, one can compute the conditional mean vector . and
conditional covariance matrix Ry‘ hs, a8
uy\fz,sm [p2hk + (1 - p2)u]3m (9a)
2 2
Ry s, = (p7ocEs+ No)ly. (9b)

With the help of (9), we employ the maximum a posteriori
(MAP) detection rule to the conditionally Gaussian distributed vari-
able yy| (flk, Sm), and the optimal decision rule that minimizes the
system error probability is,

& = argmin {|ly), — [p*hy, + (1 — p*)uls,n |} (10)

Sm€
To simplify the representation of the decision rule given in (10),
we let dy = p?hy, + (1 — p?)u. Expanding (10), one can get the
following equivalent decision rule

iy = argmin {—2R(df yrs,)} = argmin {—2R(axsm)}-
sm€S Sm€

an

After some algebraic manipulations, one can show that (11) is
equivalent to (8), and this completes the proof. |

If the receiver has perfect knowledge of the fading channel, i.e.,
p = 1, then the decision variable becomes o = flkH Y&, and the de-
cision rule specializes to the conventional MRC diversity receiver.
However, when p < 1, one can see from the decision rule given in
(8) that the conventional MRC receiver is not optimal in the pres-
ence of channel estimation error.

IV. ERROR PERFORMANCE ANALYSES
A. Conditional Error Probability

We first evaluate the conditional error probability (CEP)
P(Ehy,), which will be used to obtain the error probability of the
diversity system in Rayleigh and Ricean fading channels.

It can be seen from the decision rule of (8) that the detected sym-
bol z;, should have the smallest Euclidean distance from the deci-
sion variable ay,. Based on this decision rule, the detection region
for oy, of the MPSK symbol s,,, should be a % angle sector cen-
tered around s,, as shown in Fig. 1, and the conditional error prob-
ability P(E\flk, Sm) equals the probability that «y is outside of the
detection region of s, when s,, is transmitted.

Since the received sample vector yj, conditioned on ﬁk is Gaus-
sian distributed, the decision variable «;, conditioned on flk is also

Gaussian distributed, a|(hy, sp) ~ N (., ’Ui\ﬁs ), with
the conditional mean and conditional variance given by '
Unfos,, ldrll?sm (12a)
"im,sm = || di||*(p*02Es + No) (12b)
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6
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g 1< sm

Fig. 1. The decision region for MPSK modulation.

withdy, = p?hy+(1—p?)u. To simplify the derivations of the CEP,
we represent the conditional pdf p(cv|hy, s,, ) in a polar coordinate
system with origin at Ug s = |dx||?sm, and the corresponding
pdf written in the polar coordinate system is

r ( 72 )
——exp | — .
2 2
T~ -~ g .
alh,sm alh,sm

With (13) and the decision region shown in Fig. 1,
P(E|hg) can be computed as

p(r,0lhy, sm,) = (13)

the CEP

. M TR [t .
P(Elhy) = 2 P(sm)/ / p(r, 0|y, s)drdd
m=1 “ R(0)
b di||*E T
= l/ Y exp —” z” S (M) do (14)
™ Jo a\h,sm (¢)
where R(0) = %, P(sp) = 47 for equiprobable
transmitted symbols. If we define the average SNR +,, as
O,.E, (K+1)o? E,
A = = o (15)
No No

where (2,, is the power of the nth fading channel, then the CEP can
be written in the form of (16) at the top of the next page, where

o2 s the variance of the estimated CG h,,(k), and the identity

hn
PP =op / a}% from (7) has been used.

B. Error Probability in Rayleigh Fading Channels
For Rayleigh fading channels, the Ricean factor K = 0, and both

the true CG hy, and the estimated CG ﬁk are zero-mean CGRVs, i.e.,
u = 0. The CEP described in (16) for Rayleigh fading channels can
be simplified to

_m N 7 2 s 2/ 7
L1 [T _ |ha(R)Psin® ()
P(E|hg) = ;/0 EeXp{ Vray Ji Sin2(9) d¢ (17)
where
2
. p
=5 A 18
Vray %(17[)2”17 (13)

is the equivalent SNR for systems with channel estimation error,
and is obtained from scaling the average SNR +,, by a factor 5 =
m. Based on the fact that 0 < p < 1, it can be easily
shown that 7y, < 7y, and equality holds when p = 1.
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If we let g, = |hn(k)[2, then the random variable g, is x2-
distributed with 2 degrees of freedom and the unconditional error
probability can be directly evaluated with the MGF method. The
MGF of the y2-distributed random variable g,, is [4, p. 19]

Dy(s) = B(e*") = (1 —s07 )7 (19)
2 _

where ;- E(|hn(k)[?) = E(gy) is the variance of the esti-
mated Rayleigh fading channel. Using the identity presented in
(19), the unconditional error probability P(E) = E[P(E|hy)] for
i.i.d. Rayleigh fading channels can be computed as

i

n=1

sm2 (37

2(@)} dg.  (20)

Note that the result in (20) agrees with [6, eqn. (24)] for the special
case of p = 1, corresponding to the case when the receiver has
perfect knowledge of the fading channel.

For communication systems with BPSK modulation, we have

M = 2, and the error probability of the diversity receiver can be
written in closed-form [14, eqn. (3.259.3)],

I(N+13)
2ymN(v,,, +1)

where I'(z) is the Gamma function, and oF}(-) is the Gauss hy-
pergeometric function. When there is no diversity in the system,
i.e. N = 1, the error probability (20) for the MPSK system can be
expressed in closed-form by changing the variable of integration to

z = cot(¢),

1 1
P(F) = F(N,-;N+1,——) (21
( ) N 2 1( 190 + 777" ) ( )

o 1

Fray $0*(57)
(=

2
1+ 9,4, sin

(22)

For the special case of perfect channel information, we have 7y, =
Yn, and (22) agrees with the result previously obtained in [11, eqn.
(36)] through a different approach.

For diversity systems with M/ > 2, the symbol error rate given
in (20) must be evaluated numerically. The expression for the SER
in (20) contains one integration with finite limits, and the integrand
is constituted of only elementary functions. Thus, it can be easily
evaluated with simple numerical methods.

C. Error Probability in Ricean Fading Channels

The unconditional error probability in Ricean fading channels is
derived in this subsection.
For i.i.d. fading channels, the pdf of the estimated CG hy, is

_ ﬂ exh | — ‘hn(k) — up?
o2 P 2 :

i g

(23)

n

Combining (16) with (23), we obtain the unconditional error proba-
bility P(E (E|hy,)p(hy)dhy, in a Ricean fading channel

-2

f{hk}

- N

H An(0)dgp

(24)
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N
H exp

n=1

{_

pQVn‘ﬁn( )

o

Up (1 — —)|251n (M

(16)

2

% [l —p

)}d¢

2) + K + 1] sin®(¢)

where

An(@) =

glhn — atin [*+hn —
7ra 2

/ exp | —
{hn}

with ¢, @ and the equivalent SNR 7, . = for Ricean fading channel
being defined as

2
U] } dhy,  (25)
hn

x a2
Friee SIN°(37)
e Mo 26
g sin® () (262)
1
a = (17?), (26b)
2
Frice £l (26c)

Y=+ K +1

Since the integrand of (25) is an exponential function of the square

of the integration variable iln(k), we can write it as the product of
a Gaussian pdf and a constant term. Then, using the properties of
Gaussian pdfs, one can get the closed-form solution of \,,(¢) as

|un] ] X
ga+1

P, — un|?
/ — exp | — |
(a3, /(g +1) op /g+1)

gla—1)° Mz} _

(g +Do?
Replacing A, (¢) in (24) with (27), we have the symbol error
probability for diversity receivers in estimated Ricean fading chan-

g(a - 1)

exp
1 h n

dhy,

1
2
g+1ex 27

nels
K @ N qlnz(l) -
P(E):e‘NFf/ 11 F.oOT M|y
0 n=1 ( )
K sin? (%)
exp{ 5 (14T g s L) d¢  (28)
p sin? (0)

where K is the Ricean factor, p is the covariance coefficient be-
tween the true CG and the estimated CG, and 7,
(26c). When K = 0, which corresponds to a Rayleigh fading chan-
nel, one can see thaty,,,, =7,,, and (28) will specialize to the error
probability for a Rayleigh fading channel given in (20).

is defined in

V. NUMERICAL EXAMPLES

The first example is used to validate the analytical error proba-
bility expressions derived for a system with a practical channel es-
timation algorithm. The channel estimation algorithm used in this
example is the pilot assisted polynomial interpolation method with
off-line training of [13], and the results are shown in Fig. 2 for 8PSK
systems. One observes excellent agreement between the results ob-
tained from Monte-Carlo simulation and analysis for various values
of the Ricean factor K and the diversity order V.
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8PSK, channel esnmated wnh polynormal |nterpo|at|on
10 T T T T

A K 0, simulation
N=1 — - K=0, analytical
* K=5dB, simulation
—— K=5dB, analytical |
-~ O K=10dB, simulation
— — K=10dB, analytical

SER

0 2 4 6 8 10
E/N, (dB)

Fig. 2. The SER of 8PSK systems with polynomial interpolation channel estima-
tion.

Next we evaluate the influence of channel estimation error on sys-
tem performances. We are using the signal-to-channel estimation
error ratio (SCER) 7 as the measure of the quality of the estimated
channel since it is independent of the Ricean factor K for a certain
channel estimation algorithm; it is defined as

EQ

B
O¢

0= (29)
The system error probabilities for different values of SCER are
shown in Fig. 3 for Ricean fading channels. From the figure, one
can see that the symbol error rates of all the systems decrease mono-
tonically with the increase of SCER, as expected, but at different
rates for different values of constellation size M and diversity order
N. Observe from this figure that systems with higher diversity order
and larger constellation size are more sensitive to channel estima-
tion error, as expected. Therefore, more accurate channel estimation
algorithms should be employed for systems with larger M or N.
The last example is used to study the relationship between chan-
nel estimation error and constellation size. Fig. 4 shows the SERs
of systems with different constellation sizes versus the correspond-
ing diversity orders. The absolute values of the curves’ slopes are
proportional to the value of SCER, and inversely proportional to
the constellation size M. An interesting observation from Fig. 4
is that the SER performance of the system with SCER=+o00 dB,
M = 8 is close to the performance of the system with SCER= 10
dB and M = 4. The same observation holds for the curve with
SCER= +o00 dB, M = 16 relative to the curve with SCER= 10 dB
and M = 8. This observation highlights the importance of having
good channel estimation for MPSK systems operating in fading en-
vironments. Fig. 3 shows that SCER= 25 dB gives essentially the
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Rician Fading K = 5 dB, Eb/NO =10dB

10 T !
—+- 1rx, 8psk
*- 11x, qpsk
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\\H~»ﬁ»7‘+>,,,,,,
10757\\\ 3
Skl
10722 TR 1
\\\\ : \*H;“
Soml i e oLy
- ‘ B e & = -
I = 20 25 30 35

SCER (dB)
Fig. 3. The effect of SCER on system performance for Ricean fading channels.

Rician Fading K = 5 dB
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ST

orrgttort

1
1
1
8,
8,
8,
4,
4,
4,

diversity order N

Fig. 4.
ders.

The system performance for different constellation sizes and diversity or-

same SER performance as SCER= +oo dB. Thus increasing the
SCER from 10 dB to 25 dB allows doubling M while maintaining
approximately the same SER.

VI. CONCLUSION

It has has been shown that the conventional MRC diversity re-
ceiver structure is not optimal when the channel estimation is cor-
rupted by additive noise. A novel diversity receiver structure which
is optimal for noisy channel state information has been derived. Ex-
act, closed-form expressions for the average error probability of the
optimal diversity receiver operating with noisy channel state infor-
mation have been derived for MPSK modulation in both Rayleigh
and Ricean channels. The new results for systems with noisy chan-
nel state information include systems with perfect channel state in-
formation as special cases. Simulation results are in excellent agree-
ment with the theoretical results. A useful observation of significant
practical design value was that improving the channel estimation
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SNR beyond 25 dB does not achieve worthwhile decrease in the
SER. A second, interesting and useful observation was that improv-

ing the channel estimation SNR about 15 dB, from 10 dB to 25 dB
allows doubling the constellation size while maintaining approxi-
mately the same SER.
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